CS310

Pumping Lemma

Oct 22, 2008

CS 310 - Fall 2008

Pacific University

Quick Review

- Pumping Lemma
- If A is a regular language, then there is a number p where, if s is any string in A of length at least p, then s may be divided into three pieces, $s=x y z$, satisfying the following conditions:

Motivation

- This is a regular language:

1*00
How do we know it is regular?
Draw a DFA
Find a string, s , whose length is $>=\mathrm{p}$
$\mathrm{p}=|\mathrm{Q}|$
Determine: $s=x y z \quad$ 1. $\quad i>=0, x y z \in L(M)$
What is y ? Where ils. $|y|>0$
the unbounded \quad 3. $|x y|<=p$ repetition?

Regular vs Non-Regular

$$
\begin{aligned}
& \left\{1^{*}\right\} \\
& \left\{1^{*} 0^{*}\right\} \\
& \left\{1^{\mathrm{n}} \mid \mathrm{n} \geq 0\right\} \\
& \left\{0^{\mathrm{n}} 1^{\mathrm{n}} \mid \mathrm{n} \geq 0\right\}
\end{aligned}
$$

Examples Galore!

- $L=\left\{a^{n} b^{m}: m>n\right\}$
- $L=\left\{a^{n} b^{m}: m<n\right\}$
- $L=\left\{a^{n} b^{m}: m==n\right\}$
- $\mathrm{L}=\left\{\mathrm{a}^{2^{*} \mathrm{n}}: \mathrm{n}>0\right\}$
- $L=\left\{a^{n}: n\right.$ is prime $\}$

Show for each language:

- A string that does pump
- A string that does not pump
- Are any of these languages regular?

Can we write any of them as a regular expression?

- $\mathrm{L}=\left\{\mathrm{a}^{\mathrm{n}} \mathrm{b}^{\mathrm{m}} \mathrm{c}^{\mathrm{n}+\mathrm{m}}: \mathrm{n}, \mathrm{m}>0\right\}$
- $L=\left\{a^{n} b a^{n}: n>=0\right\}$
- $L=\left\{w b b w \mid w \in\{a, b\}^{*}\right\}$
- $\mathrm{L}=\left\{(\mathrm{ac})^{\mathrm{n}} \mathrm{b}^{\mathrm{m}}: \mathrm{n}>\mathrm{m}>=0\right\}$
- $L=\left\{a^{n} b^{m}: m, n>0\right\}$

