CS310

Nondeterministic Finite Automata Sections:1.2 page 47

September 12, 2008

Pacific University

Example (1.30)

- Accept string of at least length three that contains a 1 in the third from end

$$
\Sigma=\{0,1\} ; \Sigma^{*} 1(0 \cup 1)(0 \cup 1)
$$

What makes this difficult for a DFA?
Equivalent DFA takes 8 states. Why 8 ?

Formal Definition of NFA

- 5 tuple ($\mathrm{Q}, \Sigma, \delta, \mathrm{q}_{0}, \mathrm{~F}$)

$$
\begin{aligned}
& \sum_{\varepsilon}=\sum \cup\{e\} \\
& \delta: Q \times \sum_{\varepsilon} \rightarrow P(Q)
\end{aligned}
$$

Formal Definition of Computing for NFA

- Given a machine $\mathrm{M}=\left(\mathrm{Q}, \sum, \delta, \mathrm{q}_{0}, \mathrm{~F}\right)$ and a string $\mathrm{w}=\mathrm{w}_{1} \mathrm{w}_{2} \ldots \mathrm{w}_{\mathrm{n}}$ over \sum, then M accepts w if there exists a sequence of states $r_{0}, r_{1} \ldots r_{n}$ in Q such that:
$-\mathrm{r}_{0}=\mathrm{q}_{0}$
$-\delta\left(r_{i}, w_{i+1}\right)=r_{i+1}, i=0, \ldots, n-1$
$-r_{n} \in F$

Practice

- Construct a NFA with three states that recognizes $\{\mathrm{w} \mid \mathrm{w}$ ends with two 0 s$\}$ $\Sigma=\{0,1\}$

Practice

- Construct a NFA with six states \{w | w even \# 0s OR exactly two 1s $\}$ $\Sigma=\{0,1\}$

Practice

- Construct a NFA with three states

$$
\begin{aligned}
& 0 * 1 * 0 * 0 \\
& \Sigma=\{0,1\}
\end{aligned}
$$

