CS310

Finite Automata Sections:1.1, 1.2 page 44

September 10, 2008

Quick Review

- Deterministic Finite Automata:

5-tuple (Q, $\sum, \delta, \mathrm{q}_{0}, \mathrm{~F}$)
Q : finite set of states
\sum : alphabet (finite set)
$\delta:$ transition function ($\delta: \mathrm{Qx} \sum->\mathrm{Q}$)
q_{0} : start state
F: accepting states (subset of Q)

- Language A is regular if there exists a Finite Automata that recognizes A.

Regular Language

- Determinism?
- Regular language
- Example?
- Example of non-regular language?

Pacific University

Regular Operations on Languages

- Given two languages, A, B, we can create new languages in a variety of ways:
- What operations have we seen?

Examples
 $\sum=\{0,1\} \quad A=\{w \mid$ w ends in 1$\}$ $B=\{w \mid w$ begins with 00$\}$

$A \cup B=$
$\mathrm{AB}=$
$\mathrm{A}^{*}=$
$A \cap B=$
$\bar{A}=$

Closure of Regular Languages

- A set is closed under some operation
- Examples?
- Regular operations

Proof

- Theorem 1.25: The class of regular languages is closed under the union operation.
If A and B are regular languages, so is $A \cup B$

What do we need to prove?
What does regular mean?
What does it mean for $A \cup B$ to be regular?

Build the machine

$\Sigma=\{0,1\}$
$\mathrm{A}=\{\mathrm{w} \mid \mathrm{w}$ contains a 1 in the penultimate position $\}$

$$
A=\{
$$

Nondeterminism

- Nondeterministic Finite Automata:

NFA

- ε transitions
- Why would we ever use this?

Pacific University

Example

- Does this NFA accept 010110 ?
- What sequence of states does it go through?

Pacific University

Proof

- Theorem 1.26: The class of regular languages is closed under the concatenation operation.
If A and B are regular languages, so is $A B$.

What do we need to prove?
What does regular mean?
What does it mean for AB to be regular?
Problems?

Examples

$\mathrm{A}=$ \{north,south $\} \quad \mathrm{B}=$ \{east,west $\}$ $\mathrm{w}=$ northeast is in AB many ways to break down this string If the AB machine breaks the string as nort and heast the string will not be accepted
$A=\{w \mid w=$ begins with 1 ends with 0$\}$
$B=\{\mathrm{w} \mid \mathrm{w}=$ begins with 0 ends with 1$\}$
$\mathrm{w}=1000011$

Proof

- Theorem 1.26: The class of regular languages is closed under the concatenation operation.
If A and B are regular languages, so is $A B$. NFA!

We will get back to this after more practice with NFAs.

