CS310

Finite Automata Sections:

Sep 3, 2008

CS 310 – Fall 2008 Pacific University

Quick Review

- Alphabet: ∑ = {a,b}
 ∑*: Closure:
- String: any finite sequence of symbols from a given alphabet. |w| = length Concatenation/Prefix/Suffix/Reverse
- Language L over ∑ is a subset of ∑* L= { x | rule about x} Concatenation/Union/Kleene Star Recursive Definition

Finite Automata

- How can we reason about computation?
- Simple model of computation
 - Finite Automata
 - extremely limited amount of memory
 - represent states of computation

Door State: Open, Closed Inputs: Front, Rear, Both, Neither

State Transition Table

Input State	Neither	Front	Rear	Both
Open				
Closed				

State Diagram

More uses...

- Recognize patterns in data
- Build an automata that can classify a string as part of a language or not

Language:

L = { $x \in \{0,1\}^*$ | x contains at least one 1 and the last 1 is followed by even number of 0s}

Set of all strings (A) accepted by a machine (M) is the *Language of the Machine* M *recognizes* A or M *accepts* A

CS 310 – Fall 2008 Pacific

Formal Definition

- Deterministic Finite Automata:
 5-tuple (Q, ∑, δ,q₀, F)
 Q: finite set of states
 - \sum : alphabet (finite set)
 - δ : transition function (δ: Qx∑−>Q)
 - q₀: start state
 - F: accepting states (subset of Q)

- Q: finite set of states
- ∑: alphabet
- $\boldsymbol{\delta}$: transition function
- q₀: start state
- F : accepting states

Q:What strings get Σ :accepted? δ :L(M) = {F:F:

Designing a DFA

- Identify small pieces
 - alphabet, each state needs a transition for each symbol
 - finite memory, what crucial data does the machine look for?
 - can things get hopeless? do we need a trap?
 - where should the empty string be?
 - what is the transition into the accept state?
 - can you transition out of the accept state?
- Practice!

$$L(M) = \{ w | w = \varepsilon \text{ or } w \text{ ends in } 1 \}$$

 $\sum = \{ 0, 1 \}$

Q: δ:

q₀: F :

•
$$\sum = \{0,1\}, L(M)=\{w \mid odd \# of 1s\}$$

Build a DFA to do math!

L(M) = Accept sums that are multiples of 3 $<math display="inline">\sum = \{ 0,1,2, <Reset > \}$

Keep a running total of input, modulo 3

∑ = {0,1}, L(M)={w | begins with 1, ends with 0}

•
$$\sum = \{0,1\}, L(M)=\{w \mid contains \ 110\}$$

•
$$\sum = \{0,1\}, L(M)=\{w \mid does not contain 110\}$$

•
$$\sum = \{0,1\}, L(M)=\{w \mid (01)^*\}$$

•
$$\sum = \{0,1\}, L(M)=\{w \mid w \text{ even } \#0s, \text{ odd } \#1s \}$$

∑ = {0,1}, L(M)={w | w any string except
 11 and 111 }

Formal Definition of Computing

Given a machine M= (Q, ∑, δ,q₀, F) and a string w=w₁w₂...wₙ over ∑, then M accepts w if there exists a sequence of states r₀,r₁...rₙ in Q such that:

$$-r_0 = q_{0:}r_0$$
 is the start state

- $-\delta$ (r_i, w_{i+1}) = r_{i+1}, i=0,...,n-1 : legal transitions
- $-r_n \in F$: stop in an accept state
- M recognizes A if A={w | M accepts w}
- Language A is *regular* if there exists a Finite Automata that recognizes A.