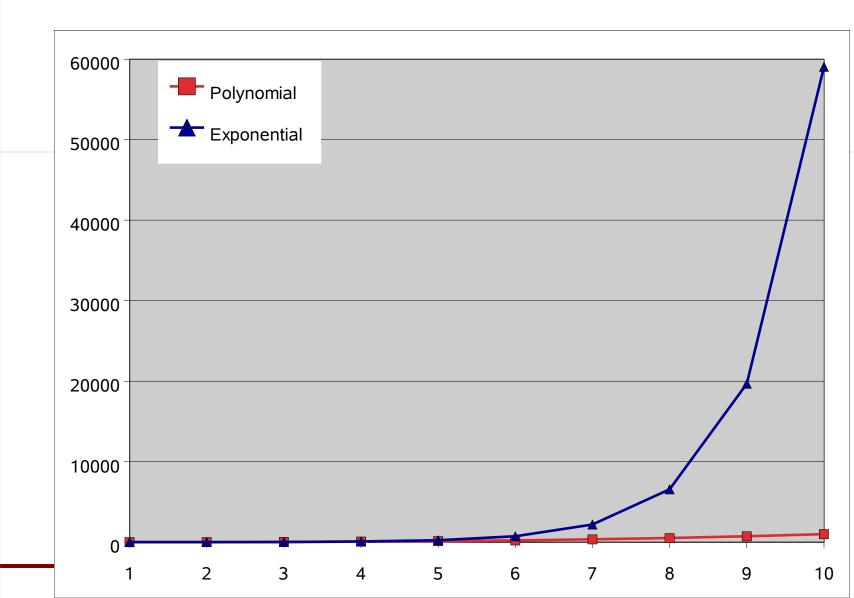
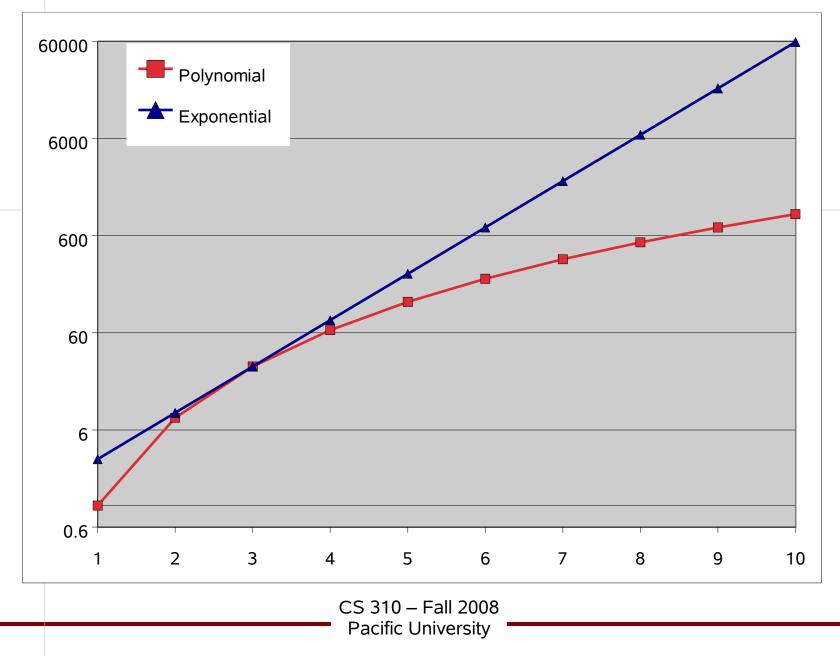
CS310


P vs NP

the steel cage death match How hard is a problem to solve?


Section 7.2 November 24, 2008

CS 310 – Fall 2008 Pacific University

Polynomial vs Exponential Polynomial: n³ Exponential: 3ⁿ

Log Scale

Complexity relationships between models

- Theorem 7.8: let t(n) >= n, every t(n) time multi-tape TM has an equivalent O((t(n)²) time single-tape TM.
 – polynomial difference
- Theorem 7.9: Every t(n) >= n time ND single tape TM has an equivalent 2^{O(t(n))} time deterministic single tape TM

– exponential difference

The class P

- P is the class of languages that are decidable in polynomial time on a deterministic, single tape TM
- Problems in class P
 - PATH: { <G,s,d> | G is a directed graph, find a directed path from s to d }
 - RELPRIME: {<x, y> | x and y are relatively prime}
 - Euclidean algorithm
- Every context-free language is in P

Real Life

 Problems in class P are usually manageable on a real computer – n^κ

 though k=100 may introduce some practical problems

The class NP

- NP is the class of languages that are decidable in polynomial time on a nondeterministic single tape TM
 - Problems in class NP
 - HAMPATH: { <G, s, t> | G is a directed graph, with Hamilton path from s to t } (a path that passes through every vertex of a graph exactly once)
 - These problems are decidable on a deterministic single tape TM in exponential time

Verifier

• A verifier of a language, A, is an algorithm, V, such that

A = { w | V accepts <w, c> for some string c} where c is a certificate

|c| is polynomial in terms of |w|

 NP is the class of languages that have polynomial time (in terms of the length of w) verifiers

P vs NP

• $P \subseteq NP$

unknown if the classes are unequal

- If P = NP, then all problems in NP can be solved in polynomial time, if we are clever enough to find the right algorithm
- NP-Completeness
 - set of problems in NP whose complexity is related to all problems in NP
 - if an NP-Complete problem can be shown to be in P, then P=NP
 - boolean satisfiability, for example