CS310

Complexity Section 7.1

November 21, 2008

Running time

- $A=\left\{0^{\kappa} 1^{\mathrm{K}} \mid k>=0\right\}$
- how long (how many steps?) will it take a single-tape TM to accept or reject a string?
- The running time
- input of length \mathbf{n}
- worst case running time
- M is a " $f(n)$ time TM"

Example

- $f(n)=5 n^{3}+4 n^{2}+6 n+1$

- the goal here is to see how the running time grows as n increases

- for large $n, 5 n^{3}$ dominates this equation
- coefficient 5 is immaterial
- we say $f(n)=n^{3}$

Big Oh

O()

- Asymptotic analysis
- estimate runtime of algorithm (or TM) on large inputs
- only look at highest order term
- allows us to compare runtime of two algorithms

Definition: Big Oh

- f, g are functions: $\mathrm{f}, \mathrm{g}: \mathrm{N} \rightarrow \mathrm{R}^{+}$
$f(n)=O(g(n))$ if positive ints c and n_{0} exist such that for every int $n>=n_{0}$

$$
f(n)<=c^{*} g(n)
$$

$\mathrm{g}(\mathrm{n})$ is an asymptotic upper bound for $\mathrm{f}(\mathrm{n})$ some constant multiple of $g(n)$ eventually dominates $f(n)$

- R^{+}: set of non-negative real numphefs

Pacific University

Example

- $f(n)=5 n^{3}+2 n^{2}+22 n+6$
- $O(f(n))=n^{3}$
- let $\mathrm{c}=6$ and $\mathrm{n}_{0}=10$
- $5 n^{3}+2 n^{2}+22 n+6<=6 n^{3}$
- for every $n>=n_{0}$
- $O(f(n))=n^{4}$ as well, but we want the tightest upper bound

Logarithms

- if $x=\log _{2} n$ then $2^{x}=n$
so $\log _{\mathrm{b}} 2^{\mathrm{x}}=\log _{\mathrm{b}} \mathrm{n}$
so $x \log _{b} 2=\log _{b} n$
so $x=\left(\log _{b} n\right) /(\log 2)$
so $\log _{\mathrm{b}}(\mathrm{n})=\mathrm{O}\left(\log _{2} \mathrm{n}\right)$ for any base because $\log 2$ is a constant

Example

- $f(n)=3 n \log _{2} n+5 n \log _{2}\left(\log _{2} n\right)+2$ $\mathrm{f}(\mathrm{n})=\mathrm{O}(\mathrm{g}(\mathrm{n}))=$?
Since $\log _{2} \mathrm{n}<=\mathrm{n}$ then
$\log _{2}\left(\log _{2} n\right)<=\log _{2}(n)$
so $f(n)=O\left(n \log _{2} n\right)$

Analyzing Algorithms

- $A=\left\{0^{k} 1^{k} \mid k>=0\right\}$ on input of length n :

1) scan, reject if 0 found to right of a 1 2) if both 0's and 1's remain, scan, cross off single 0 , single 1
2) if 0's remain after 1's crossed off or conversely, reject. otherwise accept.

Analysis

- Step 1: scan, verify: n steps forward, n steps back: $2 n$ steps so $O(n)$
- Step 2: scan, cross off 0 and 1 each scan. Each scan uses $O(n)$ steps, n/2 scans at most, so O(n²)
- Step 3: Scan, accept or reject O(n)
- Total: $O(n)+O\left(n^{2}\right)+O(n)$ - O(n^{2})

Algorithm

- If we had a two tape TM, could we do this in $O(n)$?
- linear time?

Complexity relationships between models

- Theorem 7.8: let $\mathrm{t}(\mathrm{n})>=\mathrm{n}$, every $\mathrm{t}(\mathrm{n})$ time multitape TM has an equivalent $\mathrm{O}\left(\mathrm{t}(\mathrm{n})^{2}\right)$ time single-tape TM.
- Theorem 7.9: Every $\mathrm{t}(\mathrm{n})>=\mathrm{n}$ time ND single tape TM has an equivalent $2^{\circ(t(n))}$ time deterministic single tape TM

