This statement is false.

CS310

The Halting Problem

Section 4.2

November 19, 2008

Some material from: Introducing the Theory of Computation, Goddard

Will it stop?

- Goldbach's Conjecture
 - Every even integer at least 4 is the sum of two primes

•
$$4 = 2 + 2$$

- \bullet 6 = 3 + 3
- 8 = 5 + 3
- 100 =
- A TM looking for a counterexample may never halt

Self Denial (and reference)

S_{elf} = { <M> | M is a TM that does not accept <M>}

– Can we build a machine that accepts that language S_{alf}?

Will it ever stop?

- A_{TM} = { <M, w> | M is a TM and M accepts w }
 - undecidable

- U is a Universal TM
 - Capable of simulating any other TM from the description of that machine
- TM U recognizes A_{TM} :
 - 1. Simulate M on input w with U
 - 2. If M accepts then U accepts; if M rejects then U rejects; if M never halts then U never halts
 - If we could get U to halt, then we could get M to halt

Why do we care?

• There is some specific problem, the Halting problem, which is *algorithmically unsolvable*!

- Software verification: does the software satisfy the requirements?
 - not algorithmically solvable!
 - (In general, for all software)

Further limits

- Some languages are not TM recognizable
 - show that the set of all TMs is smaller than the set of all languages

- How many TMs are there?
- How many Languages are there?

Counting

- Diagonalization
 - how can we determine if two infinite sets are the same size? (Georg Cantor)
 - cannot just count them up
 - the two sets are the same size if the elements of one set can be paired with the elements from the other set (no counting!)
 - define a function as a correspondence

Correspondence

- A and B are sets, F is a function from A to B; F: A →B
 - Fis one-to-one if it never maps two different elements to the same place, if F(a) ≠F(c) whenever a ≠ c
 - F is onto if it hits every element of B, for each
 b ∈ B this is an a ∈ A such that F(a) = b
 - A and B are the same size if there is a one-toone, onto function F
 - F is a correspondence

Application

- Let N be the set of natural numbers, let E be the set of even natural numbers.
- If we can find a correspondence function between these two infinite sets, the are the same size
 - -f(n) = 2n
- Definition: a set is countable if it is finite or in correspondence with the set of natural numbers

Diagonialization

- Is Q = { m/n | m,n ∈ N } countable?
 - can we find a correspondence?
 - We can make a list of all the elements in Q, and match them with the elements in N

What could ever be uncountable?

- The set of Real Numbers, R
- Proof by contradiction
 - assume R is countable
 - there must exists a correspondence function f with the set N
 - find some number $x \in R$ that is not paired with a number $p \in N$
 - we will construct this number x

Real Numbers are uncountable

- Assume f() exists
- Construct x such
 x ≠f(p) for any p

p	(p)
1	3.14159
2	5.5 <mark>5</mark> 555
3	0.1234
р	f(p)

- x is between 0 and 1
- ensure x ≠f(1), set the 10ths' place to 4
- ensure x ≠f(2), set the 100ths' place to 6
 - forever....
 - never select 0 or 9 since .1999... = .2000*
- we know x ≠f(p) for any p since x differs
 from f(p) in the pth decimal place *On the final,

CS 310 – Fall 2008
Pacific University

prove this for 2

points extra credit

Some languages are not TM recog.

- show that the set of all TMs is countable
 - the set of all TM is countable because each TM, M, can be encoded into a string, <M>
- omit all strings that are not valid TMs
- show that the set of all languages is not
 - set of all infinite binary sequences, B, is uncountable, using proof by contradiction similar to Real Numbers

Encode TM as string

- Assume $\Sigma = \{0, 1\}; \Gamma = \{0, 1, \nabla\}$
- Encode elements of δ using 1s

$$\delta(q_i, x) = (q_i, y, M)$$
 is

- $en(q_i)0en(x)0en(q_j)0en(y)0en(M)$
- two 0s separate transitions,
 beginning and end marked with 000

q₀ is start

q₁ is accept

	q_{n-1}	is reject
•	We	e could build a TM to check to see if a string is
	a le	egal encoding of a deterministic TM

– what does that language look like?

Z en(Z)0 11 11▽ 111Z en(Z)

The Halting Problem, Proof

- A_{TM} = { <M, w> | M is a TM and M accepts w }
 - undecidable, may never halt
 - assume A_{TM} is decidable and that H is a TM decider (always halts) for A_{TM}
 - on input <M,w>:

The Halting Problem, Proof, cont.

- Construct a TM, D, with H as subroutine.
- D calls H to determine what M does when input is its encoding. Once D determines, it does the opposite.
 - D = On input <M>, where M is a TM
 - 1) Run H on <M, <M>>
 - 2) If H accepts, reject. If H rejects, accept.

Contradiction! We can use diagonalization to explore this further