This statement is false.

CS310

The Halting Problem Section 4.2

November 19, 2008

Some material from:
Introducing the Theory of Computation, Goddard

Will it stop?

- Goldbach's Conjecture
- Every even integer at least 4 is the sum of two primes
- $4=2+2$
- $6=3+3$
- $8=5+3$
- $100=$
- A TM looking for a counterexample may never halt

Self Denial (and reference)

$\mathbf{S}_{\text {elf }}=\{<M>\mid M$ is a TM that does not accept $<M>\}$

- Can we build a machine that accepts that language $\mathbf{S}_{\text {elf }}$?

Will it ever stop?

- $A_{T M}=\{<M, w>\mid M$ is a TM and M accepts $w\}$
- undecidable
- U is a Universal TM
- Capable of simulating any other TM from the description of that machine
- TM U recognizes $A_{T M}$:
- 1. Simulate M on input w with U
- 2. If M accepts then U accepts; if M rejects then U rejects; if M never halts then U never halts
- If we could get U to halt, then we could get M to halt

Why do we care?

- There is some specific problem, the Halting problem, which is algorithmically unsolvable!
- Software verification: does the software satisfy the requirements?
- not algorithmically solvable!
- (In general, for all software)

Further limits

- Some languages are not TM recognizable
- show that the set of all TMs is smaller than the set of all languages
- How many TMs are there?
- How many Languages are there?

Counting

- Diagonalization
- how can we determine if two infinite sets are the same size? (Georg Cantor)
- cannot just count them up
- the two sets are the same size if the elements of one set can be paired with the elements from the other set (no counting!)
- define a function as a correspondence

Correspondence

- A and B are sets, F is a function from A to $B ; F: A \rightarrow B$
- Fis one-to-one if it never maps two different elements to the same place, if $F(a) \neq F(c)$ whenever $a \neq c$
$-F$ is onto if it hits every element of B, for each $b \in B$ this is an $a \in A$ such that $F(a)=b$
$-A$ and B are the same size if there is a one-toone, onto function F
$-F$ is a correspondence

Application

- Let N be the set of natural numbers, let E be the set of even natural numbers.
- If we can find a correspondence function between these two infinite sets, the are the same size
$-f(n)=2 n$
- Definition: a set is countable if it is finite or in correspondence with the set of natural numbers

Diagonialization

- Is $Q=\{m / n \mid m, n \in N\}$ countable?
- can we find a correspondence?
- We can make a list of all the elements in Q , and match them with the elements in N

We cannot just go down the first row because...

What could ever be uncountable?

- The set of Real Numbers, R
- Proof by contradiction
- assume R is countable
- there must exists a correspondence function f with the set N
- find some number $x \in R$ that is not paired with a number $p \in N$
- we will construct this number x

Real Numbers are uncountable

- Assume f() exists
- Construct x such $x \neq f(p)$ for any p

p	$f(p)$
1	$3.14159 \ldots$
2	5.55555
3	$0.1234 \ldots$
p	$f(p)$

- x is between 0 and 1
- ensure $x \neq f(1)$, set the $10^{\text {th }}$ ' place to 4
- ensure $x \neq f(2)$, set the $100^{\text {th }} \mathbf{s}^{\prime}$ place to 6
- forever....
- never select 0 or 9 since $.1999 \ldots=.2000^{*}$
- we know $x \neq f(p)$ for any p since x differs from $f(p)$ in the $p^{\text {th }}$ decimal place *On the final,

Some languages are not TM recog.

- show that the set of all TMs is countable
- the set of all TM is countable because each TM, M, can be encoded into a string, <M>
- omit all strings that are not valid TMs
- show that the set of all languages is not
- set of all infinite binary sequences, B, is uncountable, using proof by contradiction similar to Real Numbers

Encode TM as string

- Assume $\Sigma=\{0,1\} ; \Gamma=\{0,1, \nabla\}$
- Encode elements of δ using 1 s

$$
\delta\left(q_{i}, x\right)=\left(q_{j}, y, M\right) \text { is }
$$

- en $\left(q_{i}\right) \operatorname{Oen}(x) \operatorname{Oen}\left(q_{j}\right) \operatorname{Oen}(y) \operatorname{Oen}(M)$
- two 0s separate transitions,
beginning and end marked with 000 q_{0} is start

Z	en(Z)
0	1
1	11
∇	111
Z	en(Z)

q_{1} is accept
$\mathrm{q}_{\mathrm{n}-1}$ is reject

- We could build a TM to check to see if a string is a legal encoding of a deterministic TM
- what does that language look like?

The Halting Problem, Proof

- $A_{T M}=\{<M, w>\mid M$ is a TM and M accepts $w\}$
- undecidable, may never halt
- assume $A_{\text {тм }}$ is decidable and that H is a TM decider (always halts) for $A_{T M}$
- on input <M,w>:

$$
H(<M, w>)\left\{\begin{array}{l}
\text { accept if } M \text { accepts } w \\
\text { rejects if } M \text { does not accept } w
\end{array}\right.
$$

The Halting Problem, Proof, cont.

- Construct a TM, D, with H as subroutine.
- $\quad \mathrm{D}$ calls H to determine what M does when input is its encoding. Once D determines, it does the opposite.
- $D=O n$ input $\langle M\rangle$, where M is a TM

1) Run H on $<\mathrm{M},<\mathrm{M} \gg$
2) If H accepts, reject. If H rejects, accept.
$D(<\mathrm{D}>)\left\{\begin{array}{l}\text { accept if } \mathrm{D} \text { does not accept <D> }\end{array}\right.$ reject if D accepts <D>
Contradiction! We can use diagonalization to explore this further
