CS310

Variants of Turing Machines

Section 3.2

November 12, 2008

Pacific University

Formal Definition (1 tape)

- 7-tuple
- $\left\{\mathrm{Q}, \Sigma, \Gamma, \delta, \mathrm{q}_{0}, \mathrm{q}_{\text {accept }}, \mathrm{q}_{\text {reject }}\right\}$
- Q: set of states
- Σ : input alphabet, not containing the blank character: \vee
$\forall \Gamma$: tape alphabet, $\vee \in \Gamma$ and $\Sigma \subseteq \Gamma$
$\forall \delta: Q \times \Gamma \rightarrow Q \times \Gamma \times\{L, R\}$ is the transition function
- $q_{0} \in Q$: start state
- $q_{\text {accept }} \in Q$: accept state
- $q_{\text {reject }} \in Q$: reject state, $q_{\text {accept }} \neq q_{\text {reject }}$

Multiple Tape Turing Machine

- For k tapes
- input string is on tape 1
- Change

$$
\begin{aligned}
& \delta: Q \times \Gamma \rightarrow Q \times \Gamma \times\{L, R\} \\
& \text { to } \\
& \delta: Q \times \Gamma^{k} \rightarrow Q \times \Gamma^{k} \times\{L, R\}^{k}
\end{aligned}
$$

Example

- Construct a two-tape Turing Machine to accept $L=\left\{a^{n} b^{n} \mid n \geq 1\right\}$
- Conceptually what do we want to do?

Theorem

- Every multi-tape Turing Machine has an equivalent single tape machine
- adding extra tapes does not add power to the Turing Machine
- Proof Idea: Simulate multi-tape TM as single tape TM

Nondeterministic TM

- Just like NFA, can take multiple transitions out of a state
- often easier to design/understand
- Design a TM to accept strings containing a c that is either preceded or followed by $a b$
- We can think of this computation as a tree - each branch from a node (state) represents one nondeterministic decision (for a single input character)

Theorem

- Every nondeterministic TM, N, has an equivalent deterministic TM, D
- Proof Idea:
- use a 3 tape TM (we can convert this to a one tape TM later)
- tape 1: input tape (read-only)
- tape 2: simulation input/output tape of the current branch of the n-d TM
- tape 3: address tape (based on the tree) to keep track of where we are in the computation

Practice

$\left\{a^{i} b^{j} c^{k} \mid i>j>0 ; k=2 i\right\}$
$\left\{w w^{R}| | w^{R} \mid\right.$ is odd, w $\left.\in\{0,1\}^{*}\right\}$
the complement of $\left\{w w^{R} \mid w \in\{0,1\}^{*}\right\}$
multiplication of two numbers in base 1:
11111 * 11 produces 1111111111

