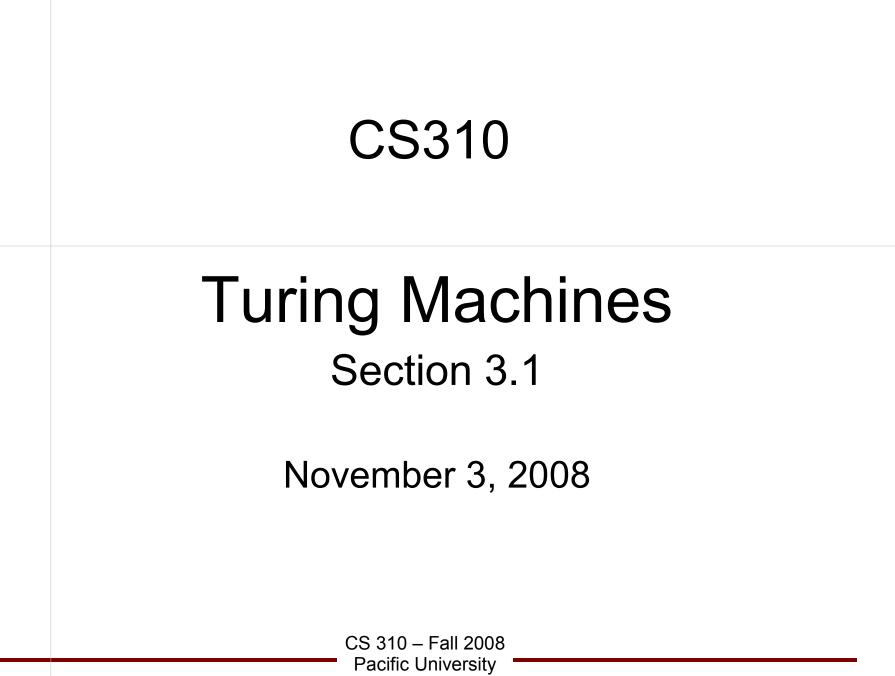
Pumping Lemma Revisited

- Is { w | w contains and equal number of As and Bs } regular?
- What MUST you do to answer this question?



Turing Machines

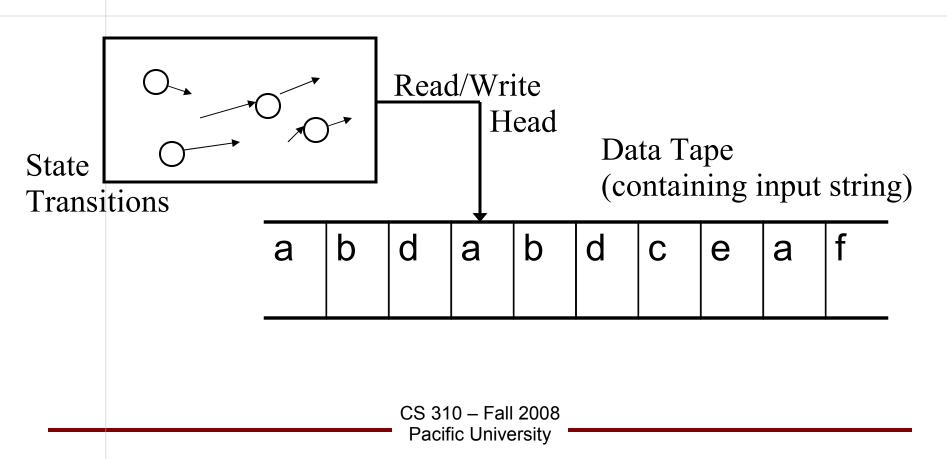
- Similar to Finite Automata
 - unlimited and unrestricted memory
 - random access
 - more accurate model of modern computer
- Problems that cannot be solved by a Turing Machine cannot be solved by a "real" digital computer
 - theoretical limits of computation

What are the fundamental capabilities and limitations of computers? Computer Science is really the science of computation, not of computers.

> CS 310 – Fall 2008 Pacific University

Turing Machine

- State Transitions plus infinite "data tape"
 - read tape
 - write tape
 - move around on tape



Differences with FA

- TM can read and write from tape
 FA can only read
- Read/Write head can move left or right
 FA can only move one direction
- TM tape is infinite
- TM accept and reject states take effect *immediately*

Church-Turing Thesis

- Turing Model is and always will be the most powerful model
 - it can simulate other models: D/NFA, PDA
 - variations do no improve it
 - extra tape
 - nondeterminism
 - extra read/write heads

Formal Definition (7 Tuple)

- {Q, Σ , Γ , δ , q_0 , q_{accept} , q_{reject} }
- Q: set of states
- Σ: input alphabet, not containing the blank character: ∨

$$\begin{split} &\Gamma: \text{tape alphabet, } \lor \in \ \Gamma \text{ and } \Sigma \subseteq \Gamma \\ &\delta: \ Q \times \Gamma \to Q \times \Gamma \times \{L, R\}: \text{transition function} \\ &q_0 \in Q: \text{ start state} \\ &q_{accept} \in Q: \text{ accept state} \\ &q_{reject} \in Q: \text{ reject state, } q_{accept} \neq q_{reject} \end{split}$$

Operation

- Start configuration of M on input w is:q₀w
- Accepting configuration: q_{accept}
- Rejecting configuration: q_{reject}
- Yield: uaq_ibv yields uq_nacv if $\delta(q_i, b) = (q_n, c, L)$
- Accepting and Rejecting configurations are called *halting* configurations

 the TM stops operating
 otherwise, loops forever

Definition of Computing

- A TM, M, accepts a string, w, if there exists a sequence of configurations, C₀,C₁,...,C_n, such that:
 - $-c_0$ is the start configuration
 - $-c_i$ yields c_{i+1} for all i
 - $-c_n$ is an accept configuration
- The set of strings M accepts is L(M)

 language of M

Notes

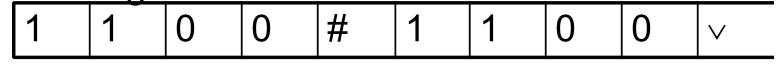
- Deterministic
- May make multiple passes over input

- Reject string by entering reject configuration or looping forever

 hard to tell if a machine will loop forever
 holting problem
 - halting problem

Example

- L = { w#w | w \in { 0,1} * }
- Conceptually, we want to do what?
- inp<u>ut string:</u>



• Configuration of the TM:

```
u q<sub>n</sub> v
```

```
\textbf{U},\,\textbf{V}\in\,\Gamma^*\text{ and }\textbf{q}_n\!\in\,\textbf{Q}
```

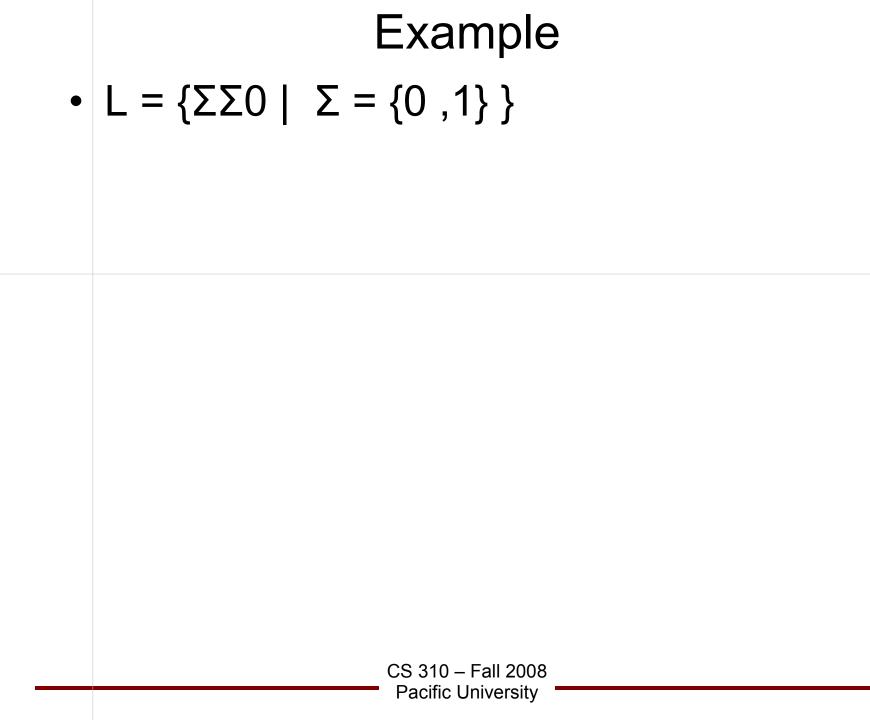
the read/write head is on the first character of v and the TM is in state $q_{\rm n}$

Definitions

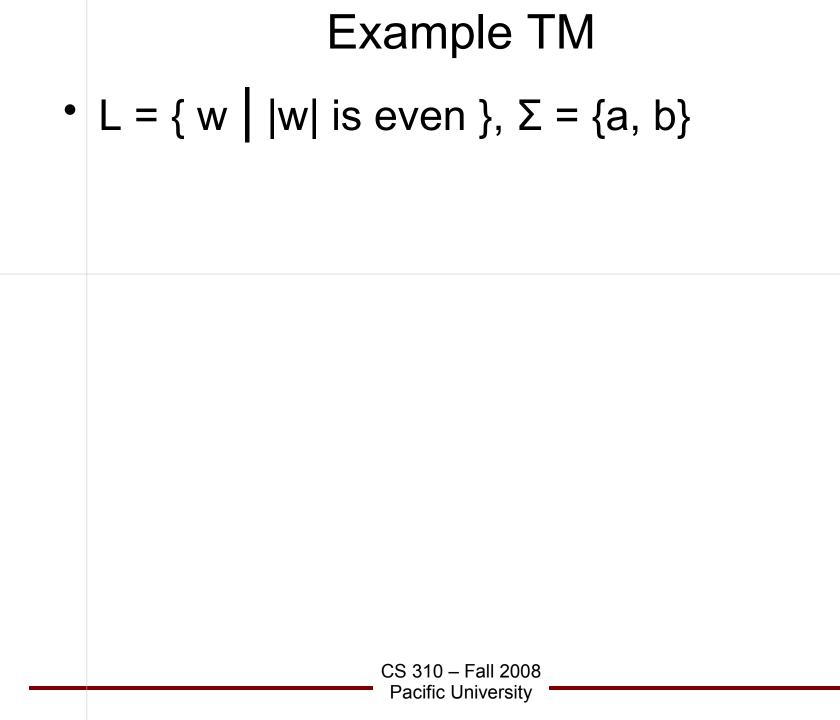
 Turing recognizable

 – a language is Turing Recognizable if some TM recognizes it

- Turing decidable
 - a language is Turing decidable if some TM decides it
 - halts on rejected strings rather than looping forever
 - hard to tell if a looping machine is really going to reject the string



Example • $L = \{a^n b^n | n \ge 0 \}$ CS 310 – Fall 2008 Pacific University



Transducer

- A machine that produces output
- A function F with domain D is Turing-Computable if there exists a TM, M, such that the configuration $q_0 w$ yields q_{accept} , F(w) for all $w \in D$.
- x = number in base 1, F(x) = 2x
 x = 111
 2x = 111111

Transducer

- x, y positive integers in base 1
- design TM that computes x+y

Transducer

- x, y positive integers in base 1, x > y
- design TM that computes x-y