CS310

Strings, String Operators, and Languages Sections:

August 27, 2008

Quick Review

- Sets (Union, Intersection, [Proper] Subset)
 { n | rule about n}
 Cross Product/Power Set
- Sequences/Tuples
- Functions

$$f: D \rightarrow R$$

Relation

$$f: A_1 \times A_2 \times ... \times A_n \rightarrow \{TRUE, FALSE\}$$

Equivalence Relations: 3 conditions

Strings

- Alphabet: Any finite set, ∑ = {a, b}
- String: Any finite sequence of symbols from a given alphabet

```
w = ababaabba, string over \sum
\varepsilon = empty string, zero symbols
length of w: |w| = number of symbols it contains
|\varepsilon| = |w| =
```

 Strings are building blocks of computer science

```
strings can represent: data sets (DNA),
source code, files...<sub>CS 310 - Fall 2008</sub>
```

String Operations

 Closure (∑*): set of all strings over ∑, including ε.

$$\sum = \{a, b\}$$
 $\sum^* = \{\epsilon, a, b, ab, ba, aa, bb, ...\}$

Concatenations

```
If x,y \in \Sigma^*, then xy is defined to the be concatenation of strings x, y x=aba\ y=bab\ xy= x^k is k copies of x concatenated x^2 =
```

String Operations

Prefix/Suffix

z = xy for $x,y,z \in \sum^*$, x is a prefix of z y is a suffix of z

Reverse

 $x \in \Sigma^*$, x^R is the reverse of x

$$x = ab, x^R = ba$$

Language

```
Language L over \Sigma is a subset of \Sigma^*
L = { x \varepsilon {a,b}* | |x| is even }
= {\varepsilon, aa , ab , }
```

- Complement of a language L over ∑
 ∑* L = L'
- Concatenation of languages

```
L_1 and L_2 over \sum

L_1L_2 = \{xy | x \in L_1, y \in L_2\}

L^2 = LL
```

Union of languages

$$L_1$$
 and L_2 over \sum
 $L_1 \cup L_2 = \{x \mid x \in L_1 \text{ or } x \in L_2\}$

L1 =
$$\{0\}^*$$

L2 = $\{1\}^*$
what is in L₁ U L₂?
what is in L₁L₂?

Kleene Star

```
L* = set of strings formed by concatenating any number of strings from L
L = { x ∈ { a, b}* | |x| is odd}
What does L contain:
{ }
```

 $L^* = \{\epsilon, \dots, \dots, \dots, \dots, \dots, \dots\}$

Recursive Definitions

```
Define L over \Sigma = \{0,1\} as

1. \varepsilon \in L

2. If x \in L then 0x1 \in L

What is in L? L = \{
```

- Can we prove that {ε,01,0011,000111,...} is equivalent to {0ⁱ1ⁱ | i>=0}?
- Show L is subset of {0ⁱ1ⁱ | i>=0} and the reverse

Proof

• For $x,y \in \Sigma^*$, show $(xy)^R = y^R x^R$