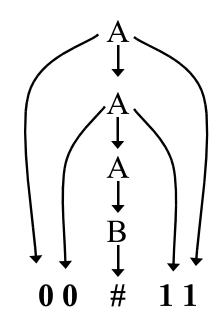
CS310

Context Free Languages and Grammars Sections:2.1 page 99

September 29, 2006

Quick Review


- (CFG) 4-tuple (V, Σ , R, S)
 - V finite set of variables
 - $-\sum$ finite set of terminals
 - R set of rules of form:

Example A -> 0A1 A -> B B -> #

- variable -> (string of variables and terminals)
- $-S \in V$, start variable

$$-L(G) = \{ w \in \Sigma^* \mid S -*> w \}$$

• w is in Σ^* and can be derived from S

Constructing a CFG from a Language, L

- Requires some thought and creativity, just like building a Finite Automata
- Hints:
 - If possible, break L into pieces L=L1 U L2
 - Create grammar for L1 and L2, S -> $S_{L1} | S_{L2}$
 - If L is regular, use regular expression as guide
 - If L is regular, construct DFA then construct CFG:
 - Make variable R_i for each state q_i in DFA
 - Add rule $R_i \rightarrow \epsilon$ for all $q_i \in F$, $R_i \rightarrow aR_z$ if $\delta(q_i, a) = q_z$
 - R_0 is start where q_0 is start of DFA

L = { w | w contains at least three 1s} CFG?

$\{ w \mid the length of w is odd \}$

{ w | w contains more 1s than 0s} (not regular!)

• $\{a^{i}b^{j}c^{k} \mid i=j \text{ or } i=k \}$