CS310

Context Free Languages and Grammars
 Sections:2.1 page 99

October 6, 2008

Context Free Grammar

- Another way to represent a language
- Can represent more languages than FA
- Produces a "Context Free Language"
- Pushdown Automata: machine that recognizes a context free language
- Trivia:
- First used to describe human languages
- Now used to parse computer languages (C, C++)

Context Free Grammar

- Example

A $\rightarrow 0 \mathrm{~A} 1$
A \rightarrow B
B -> \#
Variables: A, B (may appear on LHS and RHS)
Terminals: $0,1, \#$ (only appear on the RHS)
Start variable: Variable on LHS of top rule
Language:
Example:

Example

- A ->
-> 00\#11
- derivation
- write $u-*>v$ if there is a derivation of the string v from u using the grammar, where u and v are strings of terminals and variables
0A1 -*> 00\#11
- Parse Tree

Exercise

$$
\begin{aligned}
& \mathrm{R} \rightarrow \mathrm{XRX} \mid \mathrm{S} \\
& \mathrm{~S} \rightarrow \mathrm{aTb} \mid \mathrm{bTa} \\
& \mathrm{~T} \rightarrow \mathrm{XTX}|\mathrm{X}| \varepsilon \\
& \mathrm{X} \rightarrow \mathrm{a} \mid \mathrm{b}
\end{aligned}
$$

Variables, terminals of G?
Start variable?
True or false? T -*> aba

Formal Definition

- A context free grammar (CFG) G is a 4 tuple (V, $\Sigma, \mathrm{R}, \mathrm{S}$)
-V finite set of variables
$-\sum$ finite set of terminals
-R set of rules of form:
- variable -> (string of variables and terminals)
$-S \in V$, start variable
- The language of the grammar is:
$-L(G)=\left\{w \in \sum^{*} \mid S-*>w\right\}$
- what?

Example

$\mathrm{L}=\left\{\mathrm{w} \in\{\mathrm{a}, \mathrm{b}\}^{*} \mid\right.$ aa is a substring $\}$
Find a grammar that generates this language

Example

- Grammar G_{2} on page 101
- Show derivation for "a boy sees a flower"
- Notice how this statement is non-creepy?
- Show the parse tree

Ambiguous Grammar

- $\mathrm{E} \rightarrow \mathrm{E}+\mathrm{E}|\mathrm{ExE}| \mathrm{E} \mid \mathrm{a}$
- Find parse tree for: a + a x a

