Hashtables

“Hashtables are arguably the single most
important data structure known to humankind.”

- Google.

ZyBook Chapter 5

(5.9 is not actually about hash tables)

High Level Concept

* Big array with a string for an index rather than an
INnt.

alnts[1] = 3; // array
printf(“%d”, alnts[1]);

NtBirthdays[“friend”] = 1992; // hash table
orintf(“%d”, htBirthdays|[“friend”]);

 Key: string (can by any type)
Value: int (or struct)

Why?

* Fast
— constant time lookup
— no rebalancing

C++: std::map
Java: java.util.HashMap
Python: Dictionary

 Easy to use
— store/lookup by any key

 Unordered data
- trees are ordered

Hash Function

 Map a key to an array index (int)
— String to Int

int sillyHash(char *szKey)
{
int 1, value = 0;
for(i = 0; 1 < strlen(szKey); 1i++)
{
value += szKey[1];

}

return value; Choosing a good hash

} function can be really
hard.

htBirthdays[“friend”] = 1992; // hash table

* htBirthdays is really just an array so this really
operates like:

htBirthdays|sillyHash(“friend”)] = 1992;

printf(“%d”, htBirthdays|sillyHash(“friend”)]);

More formally

* A hash table maps keys to a certain location
— bucket

* A hash function changes the key into an index
value

- hash value
- Use case: turn a string into an int

(picture)

Hash Function

Picture

© 0O N OO OB~ W N+ O

=
o

Collision

* Very difficult to have a hash function that never
produces a collision

- Perfect Hash - each key maps to an empty bucket!
- very rare

e How should we handle the collision?

Collisions

* Open Addressing
- find an empty slot
- Linear probing
— Quadratic probing
- re-hash (double hash)

* Separate Chaining
— each bucket is a linked list!

Open Addressing

If two keys, map to the same bucket, we have a
collision

Find unoccupied space for the second key
Must be able to find both again next time!

Analysis: (sum of the # of probes to locate each
key) / # keys In the table

Open Addressing

* Find another open bucket
* bucket =

Linear Probing

* On collision, use the next empty spot

* On collision at h(n) try:
- (h(n) +1) % tableSize
— (h(n) +2) % tableSize
- elc.

Example

f(i) = |

h(Kn) =n % 11
Bucket Data

Insert

M13
G7

Q17

Y25

R18
226

F6

© 00O NO 01 bW N+ O

[HEN
o

Primary Clustering

Quadratic Probing

If h(n) is occupied, try
(h(n) + 12) mod table-size,
(h(n) + 22) mod table-size,

and so on until an empty cell is found

Example

f(i) = in2

h(Kn) =n % 11
Bucket Data

Insert

M13
G7

Q17

Y25

R18
226

F6

© 00O NO 01 bW N+ O

[HEN
o

Secondary Clustering

Re-Hashing

e Two hash functions

e The second hash function has to be chosen with
care:

- The sequence should be able to visit all slots in the
table.

- The function must be different from the first to avoid
clustering.

- It must be very simple to compute.

Chaining
e Each bucket is a linked list!

 On collision, add item to list

* How does lookup work?

How can we make chaining “faster”?

Problem

* Hash the keys M13, G7, Q17, Y25, R18, Z26,
and F6 using the hash formula h(Kn) = n mod 9
with the following collision handling technique:
(a) linear probing, (b) chaining

 Compute the average number of probes to find
an arbitrary key K for both methods.

* avg = (summation of the # of probes to locate
each key in the table) / # of keys In the table

How to choose a hash function

* Hash function maps keys to indexes
- h(K) =M
- Indexes (0 to M-1)

 Problems

- find suitable function
 distribute keys evenly across the table
* minimize collisions

- find suitable M
- handle collisions

Hash Functions section 5.7

* Modulo or Division hashing

* Midsquare

* Multiplicative string hash

Division Hashing

* bucket = key % N
* N is length of table AND prime number

Multiplicative string hash

MidSquare

* Turn the key Into an integer
- square the key
- take some bits from the center of the square

https://research.cs.vt.edu/AVresearch/hashing/midsquare.php

Code

// get middle 8 bits from an int

// assume 4 byte integers

unsigned int key = 0x1231a456;
unsigned int middle;

middle = (key & Ox000ff000) >> 12;
printf ("%08x %08x\n", key, middle);

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28

