
  

Hashtables

“Hashtables are arguably the single most 
important data structure known to humankind.”

- Google.

ZyBook Chapter 5

(5.9 is not actually about hash tables)



  

High Level Concept
● Big array with a string for an index rather than an 

int.

aInts[1] = 3; // array

printf(“%d”, aInts[1]);

htBirthdays[“friend”] = 1992; // hash table

printf(“%d”, htBirthdays[“friend”]);

● Key: string (can by any type)  
Value: int (or struct)



  

Why?
● Fast

– constant time lookup
– no rebalancing

● Easy to use
– store/lookup by any key

● Unordered data
– trees are ordered

C++:   std::map

Java: java.util.HashMap

Python: Dictionary



  

Hash Function

● Map a key to an array index (int)
– String to int

int sillyHash(char *szKey)
{
  int  i, value = 0;
  for(i = 0; i < strlen(szKey); i++)
  {
    value += szKey[i];
  }
  return value;
}

Choosing a good hash
function can be really
hard.



  

htBirthdays[“friend”] = 1992; // hash table

● htBirthdays is really just an array so this really 
operates like:

htBirthdays[sillyHash(“friend”)] = 1992;

printf(“%d”, htBirthdays[sillyHash(“friend”)]);



  

More formally

● A hash table maps keys to a certain location
– bucket

● A hash function changes the key into an index 
value
– hash value
– Use case: turn a string into an int



  

(picture)



  

Picture

0

1

2

3

4

5

6

7

8

9

10

Hash Function



  

Collision

● Very difficult to have a hash function that never 
produces a collision
– Perfect Hash - each key maps to an empty bucket!
– very rare

● How should we handle the collision?



  

Collisions

● Open Addressing
– find an empty slot
– Linear probing
– Quadratic probing
– re-hash (double hash)

● Separate Chaining
– each bucket is a linked list!



  

Open Addressing

● If two keys, map to the same bucket, we have a 
collision

● Find unoccupied space for the second key
● Must be able to find both again next time!
● Analysis: (sum of the # of probes to locate each 

key) / # keys in the table



  

Open Addressing

● Find another open bucket
● bucket =



  

Linear Probing

● On collision, use the next empty spot

● On collision at h(n) try:
– (h(n) +1) % tableSize
– (h(n) +2) % tableSize
– etc.
–



  

Example
f(i) = i

h(Kn) = n % 11

Insert
M13
G7
Q17
Y25
R18
Z26
F6

Bucket Data
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Primary Clustering



  

Quadratic Probing

• If h(n) is occupied, try

• ( h(n) + 12 ) mod table-size,

• ( h(n) + 22 ) mod table-size,

• and so on until an empty cell is found



  

Example
f(i) = i^2

h(Kn) = n % 11

Insert
M13
G7
Q17
Y25
R18
Z26
F6

Bucket Data
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Secondary Clustering



  

Re-Hashing

● Two hash functions

● The second hash function has to be chosen with 
care:
– The sequence should be able to visit all slots in the 

table.
– The function must be different from the first to avoid 

clustering.
– It must be very simple to compute.



  



  

Chaining

● Each bucket is a linked list!

● On collision, add item to list

● How does lookup work?

How can we make chaining “faster”?



  

Problem

● Hash the keys M13, G7, Q17, Y25, R18, Z26, 
and F6 using the hash formula h(Kn) = n mod 9 
with the following collision handling technique: 
(a) linear probing, (b) chaining

● Compute the average number of probes to find 
an arbitrary key K for both methods.

● avg = (summation of the # of probes to locate 
each key in the table) / # of keys in the table



  

How to choose a hash function

● Hash function maps keys to indexes
– h(K) = M
– indexes (0 to M-1)

● Problems
– find suitable function

● distribute keys evenly across the table
● minimize collisions

– find suitable M
– handle collisions



  

Hash Functions section 5.7

● Modulo or Division hashing

● Midsquare

● Multiplicative string hash



  

Division Hashing

● bucket = key % N
● N is length of table AND prime number



  

Multiplicative string hash



  

MidSquare

● Turn the key into an integer
– square the key
– take some bits from the center of the square

https://research.cs.vt.edu/AVresearch/hashing/midsquare.php



  

Code 

// get middle 8 bits from an int

// assume 4 byte integers
unsigned int key = 0x1231a456;
unsigned int middle;
middle = (key & 0x000ff000) >> 12;
printf("%08x %08x\n", key, middle);
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