

Hashtables

“Hashtables are arguably the single most
important data structure known to humankind.”

- Google.

ZyBook Chapter 5

(5.9 is not actually about hash tables)

High Level Concept
● Big array with a string for an index rather than an

int.

aInts[1] = 3; // array

printf(“%d”, aInts[1]);

htBirthdays[“friend”] = 1992; // hash table

printf(“%d”, htBirthdays[“friend”]);

● Key: string (can by any type)
Value: int (or struct)

Why?
● Fast

– constant time lookup
– no rebalancing

● Easy to use
– store/lookup by any key

● Unordered data
– trees are ordered

C++: std::map

Java: java.util.HashMap

Python: Dictionary

Hash Function

● Map a key to an array index (int)
– String to int

int sillyHash(char *szKey)
{
 int i, value = 0;
 for(i = 0; i < strlen(szKey); i++)
 {
 value += szKey[i];
 }
 return value;
}

Choosing a good hash
function can be really
hard.

htBirthdays[“friend”] = 1992; // hash table

● htBirthdays is really just an array so this really
operates like:

htBirthdays[sillyHash(“friend”)] = 1992;

printf(“%d”, htBirthdays[sillyHash(“friend”)]);

More formally

● A hash table maps keys to a certain location
– bucket

● A hash function changes the key into an index
value
– hash value
– Use case: turn a string into an int

(picture)

Picture

0

1

2

3

4

5

6

7

8

9

10

Hash Function

Collision

● Very difficult to have a hash function that never
produces a collision
– Perfect Hash - each key maps to an empty bucket!
– very rare

● How should we handle the collision?

Collisions

● Open Addressing
– find an empty slot
– Linear probing
– Quadratic probing
– re-hash (double hash)

● Separate Chaining
– each bucket is a linked list!

Open Addressing

● If two keys, map to the same bucket, we have a
collision

● Find unoccupied space for the second key
● Must be able to find both again next time!
● Analysis: (sum of the # of probes to locate each

key) / # keys in the table

Open Addressing

● Find another open bucket
● bucket =

Linear Probing

● On collision, use the next empty spot

● On collision at h(n) try:
– (h(n) +1) % tableSize
– (h(n) +2) % tableSize
– etc.
–

Example
f(i) = i

h(Kn) = n % 11

Insert
M13
G7
Q17
Y25
R18
Z26
F6

Bucket Data

0

1

2

3

4

5

6

7

8

9

10

Primary Clustering

Quadratic Probing

• If h(n) is occupied, try

• (h(n) + 12) mod table-size,

• (h(n) + 22) mod table-size,

• and so on until an empty cell is found

Example
f(i) = i^2

h(Kn) = n % 11

Insert
M13
G7
Q17
Y25
R18
Z26
F6

Bucket Data

0

1

2

3

4

5

6

7

8

9

10

Secondary Clustering

Re-Hashing

● Two hash functions

● The second hash function has to be chosen with
care:
– The sequence should be able to visit all slots in the

table.
– The function must be different from the first to avoid

clustering.
– It must be very simple to compute.

Chaining

● Each bucket is a linked list!

● On collision, add item to list

● How does lookup work?

How can we make chaining “faster”?

Problem

● Hash the keys M13, G7, Q17, Y25, R18, Z26,
and F6 using the hash formula h(Kn) = n mod 9
with the following collision handling technique:
(a) linear probing, (b) chaining

● Compute the average number of probes to find
an arbitrary key K for both methods.

● avg = (summation of the # of probes to locate
each key in the table) / # of keys in the table

How to choose a hash function

● Hash function maps keys to indexes
– h(K) = M
– indexes (0 to M-1)

● Problems
– find suitable function

● distribute keys evenly across the table
● minimize collisions

– find suitable M
– handle collisions

Hash Functions section 5.7

● Modulo or Division hashing

● Midsquare

● Multiplicative string hash

Division Hashing

● bucket = key % N
● N is length of table AND prime number

Multiplicative string hash

MidSquare

● Turn the key into an integer
– square the key
– take some bits from the center of the square

https://research.cs.vt.edu/AVresearch/hashing/midsquare.php

Code

// get middle 8 bits from an int

// assume 4 byte integers
unsigned int key = 0x1231a456;
unsigned int middle;
middle = (key & 0x000ff000) >> 12;
printf("%08x %08x\n", key, middle);

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28

