Hashtables

“Hashtables are arguably the single most
important data structure known to humankind.”

- Google.

ZyBook Chapter 5

(5.9 is not actually about hash tables)



High Level Concept

* Big array with a string for an index rather than an
INnt.

alnts[1] = 3; // array
printf(“%d”, alnts[1]);

NtBirthdays[“friend”] = 1992; // hash table
orintf(“%d”, htBirthdays|[“friend”]);

 Key: string (can by any type)
Value: int (or struct)



Why?

* Fast
— constant time lookup
— no rebalancing

C++: std::map
Java: java.util.HashMap
Python: Dictionary

 Easy to use
— store/lookup by any key

 Unordered data
- trees are ordered



Hash Function

 Map a key to an array index (int)
— String to Int

int sillyHash(char *szKey)
{
int 1, value = 0;
for(i = 0; 1 < strlen(szKey); 1i++)
{
value += szKey[1];

}

return value; Choosing a good hash

} function can be really
hard.



htBirthdays[“friend”] = 1992; // hash table

* htBirthdays is really just an array so this really
operates like:

htBirthdays|sillyHash(“friend”)] = 1992;

printf(“%d”, htBirthdays|sillyHash(“friend”)]);



More formally

* A hash table maps keys to a certain location
— bucket

* A hash function changes the key into an index
value

- hash value
- Use case: turn a string into an int



(picture)



Hash Function

Picture
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Collision

* Very difficult to have a hash function that never
produces a collision

- Perfect Hash - each key maps to an empty bucket!
- very rare

e How should we handle the collision?



Collisions

* Open Addressing
- find an empty slot
- Linear probing
— Quadratic probing
- re-hash (double hash)

* Separate Chaining
— each bucket is a linked list!



Open Addressing

If two keys, map to the same bucket, we have a
collision

Find unoccupied space for the second key
Must be able to find both again next time!

Analysis: (sum of the # of probes to locate each
key) / # keys In the table



Open Addressing

* Find another open bucket
* bucket =



Linear Probing

* On collision, use the next empty spot

* On collision at h(n) try:
- (h(n) +1) % tableSize
— (h(n) +2) % tableSize
- elc.



Example

f(i) = |

h(Kn) =n % 11
Bucket Data

Insert

M13
G7

Q17

Y25

R18
226

F6
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Primary Clustering



Quadratic Probing

If h(n) is occupied, try
( h(n) + 12 ) mod table-size,
( h(n) + 22 ) mod table-size,

and so on until an empty cell is found



Example

f(i) = in2

h(Kn) =n % 11
Bucket Data

Insert

M13
G7

Q17

Y25

R18
226

F6
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Secondary Clustering



Re-Hashing

e Two hash functions

e The second hash function has to be chosen with
care:

- The sequence should be able to visit all slots in the
table.

- The function must be different from the first to avoid
clustering.

- It must be very simple to compute.






Chaining
e Each bucket is a linked list!

 On collision, add item to list

* How does lookup work?

How can we make chaining “faster”?



Problem

* Hash the keys M13, G7, Q17, Y25, R18, Z26,
and F6 using the hash formula h(Kn) = n mod 9
with the following collision handling technique:
(a) linear probing, (b) chaining

 Compute the average number of probes to find
an arbitrary key K for both methods.

* avg = (summation of the # of probes to locate
each key in the table) / # of keys In the table




How to choose a hash function

* Hash function maps keys to indexes
- h(K) =M
- Indexes (0 to M-1)

 Problems

- find suitable function
 distribute keys evenly across the table
* minimize collisions

- find suitable M
- handle collisions



Hash Functions section 5.7

* Modulo or Division hashing

* Midsquare

* Multiplicative string hash



Division Hashing

* bucket = key % N
* N is length of table AND prime number



Multiplicative string hash



MidSquare

* Turn the key Into an integer
- square the key
- take some bits from the center of the square

https://research.cs.vt.edu/AVresearch/hashing/midsquare.php



Code

// get middle 8 bits from an int

// assume 4 byte integers

unsigned int key = 0x1231a456;
unsigned int middle;

middle = (key & Ox000ff000) >> 12;
printf ("%08x %08x\n", key, middle);
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