

Complexity

ZyBook 2.3-2.6

Motivationvoid dequeue(Queue *psQ, void *pBuf, int size)
{
 // EXIT Node at the end of the list
 ListElementPtr psCurr;
 // ignore error checking
 psCurr = psQ->psList;

 // walk to the end of the list
 while(psCurr && psCurr->next)
 {
 psCurr = psCurr->psNext;
 }

 memcpy(pBuf, psCurr->pData, size);
 free(psCurr->psNext);
 psCurr->psNext = NULL;
}

void dequeue(Queue *psQ, void *pBuf, int size)
{
 // EXIT Node at the head of the list
 ListElementPtr psCurr = psQ->psList;
 memcpy(pBuf, psQ->psList->pData, size);
 psQ->psList = psQ->psList->next;
 free(psCurr);
}

struct ListElement
{
 void* pData;
 ListElementPtr psNext;
};

struct Queue
{
 ListElementPtr psList;
};

Goals

● How much storage is used?
– space complexity

● How many “steps” are run?
– runtime complexity

● Based on the size of the input data
– what does this mean?

Two types of performance

● This algorithm takes N2 steps to run
– We care about this!

● This loop takes 10 instructions but I can rewrite it
to take 9!
– We don’t care about this one in this class
– Later in life, this might be important
– Many people use this as an excuse to write bad code

Algorithmic Complexity

● How does the runtime increase as the problem
size increases?
– we care about growth, not actual numbers
– I doubled my input size, how did my runtime grow?

● How do we measure the runtime?
– language, machine independent!

● How do we measure the problem size?

Runtime Complexity

● What value does the running time depend on?
– changing what number changed the runtime?

const int N = 500;
int i;
int aCounts[N];

for (i = 0; i < N; ++ i)
{
 aCounts[i] = 0;
}

Runtime Complexity

const int N = 500;
int i, j;
int aCounts[N][N];

for (i = 0; i < N; ++ i)
{
 for (j = 0; i < N; ++j)
 {
 aCounts[i][j] = 0;
 }
}

N? Complexity?
int isSorted (const int aNums[], int howmany)
{
 int bSorted;
 int i;

 bSorted = true;

 for (i = 0; i < (howmany - 1); ++i)
 {
 if (aNums[i] > aNums[i + 1])
 {
 bSorted = false;
 }
 }

 return bSorted;
}

Formal Definition: Big-O

● Computational Complexity
– number of steps related to some data size, N
– number of items
– O(N)
– O(N2)

● Growth rate!

● Algorithm:

Big-O

● Growth, not exact runtime

● Can’t (always) tell which algorithm is faster

● Concerned with very large inputs

● Asymptotic algorithm analysis

Big-O notation

● Find a function, g(n), that describes the execution
time

● O(g(n))

● We only include the highest order terms
– also ignore constants

● x2 + x + 1
– Which term dominates this equation (as x gets big)?

Categories

● O(1) - constant

● O(log2 N) - logarithmic

● O(N) - linear

● O(Nlog2 N) - log linear

● O(N2) - quadratic
● O(N3) - cubic
● O(2N) - exponential
● O(N!) - factorial

Growth Rates

N log2N Nlog2N N2 N3 2n

2 1 2 4 8 4

4 2 8 16 64 16

8 3 24 64 512 256

16 4 64 256 4096 65536

O(n)

O(n!) O(2n) O(n2)

O(n log n)

Scenarios

● Best Case

● Average Case

● Worst Case

Identify Big-O
Average case Worst case

Search insert Delete Search Insert Delete

Unordered
Array

Ordered
Array

Singly
Linked List

Formally

Function f(n) is O(g(n)) iff there exist positive
constants c and n0 such that f(n) <= cg(n) for all
n, where n >= n0.

for (i = 0; i < howmany; ++i)
{
 for (j = i + 1; j < howmany; ++j)
 {
 if(aNums[i] < aNums[j])
 {
 temp = aNums[i];
 aNums[i] = aNums[j];
 aNums[j] = temp;
 }
 }
}

// how many times is the if() test executed?

Compiler

● gcc -O# -o bin/runMe bin/driver.o bin/stack.o
● # is zero to 3

– zero: default, no speed optimization
– 1, 2, 3 increasing levels of optimization (speed/size)

● almost no chance of the debugger working

http://gcc.gnu.org/onlinedocs/gcc/Optimize-Options.html

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20

