

Trees

Trees

● Linear data structures

● Trees
– node may have multiple successors

(picture)

Vocab

● root
● degree
● parent
● child
● leaf
● siblings
● ancestors

Vocab

● descendants

● subtree

● level

● height of a tree

● depth of a node

Binary Tree

Binary Tree Code

● Define a C struct to hold a binary tree node and
integer data

Walk the Tree

● In order

● Pre order

● Post order

Binary Search Tree

● Definition:

● Why is this useful?

Build a BST

● Use lexicographic (dictionary or alphabetical)
ordering
– jan, feb, mar, apr, may, jun, jul, aug, sep, oct, nov,

dec

Walk the tree

● Pre order

● In order

● Post order

bstInsert

● Write an algorithm for bstInsert.

● What is the worst case computing complexity
of your algorithm? Why?

● Write the C function bstInsert.

FindLevel

● Write a C function bstFindLevel that returns the
level of a node in a BST.

● Write a C function btFindLevel that returns the
level of a node in a binary tree.

Recursion!

● A function that calls itself!

int foo(int x)
{
 if(x > 0)
 {
 return 2 + foo(x-1);
 }
 return 0;
}

foo(2); // ???

Activation Records

● Each function adds one Activation Record
– stack frame

● When the function terminates, the AR is popped
off the stack

Recursion!

● Draw the activation records for foo(2);

int foo(int x)
{
 if(x > 0)
 {
 return 2 + foo(x-1);
 }
 return 0;
}

int main()
{
 foo(2); // ???
}

Problem solving
● First step is to frame the problem in terms of itself.

– a pattern

● Apply this pattern to create a recursive solution to
the problem

● Divide a problem up into:
– small unit of work
– recursive call to do the rest of the work

Example

● A factorial is defined as follows:

n! = n * (n-1) * (n-2) …. * 1;

● For example:

1! = 1 (Base Case)

2! = 2 * 1 = 2

3! = 3 * 2 * 1 = 6

4! = 4 * 3 * 2 * 1 = 24

5! = 5 * 4 * 3 * 2 * 1 = 120

Pattern? Small unit of work? Recursion?

Problems

● Write int factorial(int x)

● bstSearch()

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22

