

Makefiles

and

Testing

Open Eclipse

● Open CS 300 example workspace

● Close All Projects

● Open MakeFileTesting

Makefiles

● Script that will build your code!

● Useful if you build your code twice!

● GNU Make
make -h

https://www.gnu.org/software/make/manual/html_node/Automatic-Variables.html

Makefile Rules

What_To_Build: What_Is_Needed_To_Build
How_To_Build

runMe: runMe.c
gcc -o runMe -g -Wall runMe.c

Makefile

target: dependency1 dependency2
command1
command2

tab!
Given a set of dependencies, make will only
run the necessary commands to build the
project. Build a dependency graph.

If a target is older than any of its dependencies
the commands are run to build the target

target and dependencies are fles

Command line

zeus$> make tree
● looks for target named tree in Makefile and

checks to see if it needs to be built

zeus$> make
● looks for the first target in Makefile and checks

to see if it needs to be built
– by convention, this target is named all:

Makefile

Rational

● Close all projects

● Open Rational

Makefile
● Variables

● Makefles can have variables such as CC and CCFLAGS

● Targets
● By default, Makefle targets are “fle targets” used to create other

fles

● .PHONY
● Declares targets that do not represent physical fles
● target that is always out-of-date, thus, will always run when asked
● e.g. make clean

Makefile

Dependency Graph

Testing with Asserts

● rationalDriver.c

success()

failure()

assert()

● You MUST reuse these functions to build your
test drivers!

static void success (char *pszStr)
{
 printf ("SUCCESS: %s\n", pszStr);
}

static void failure (char *pszStr)
{
 printf ("FAILURE: %s\n", pszStr);
}

static void assert (bool bExpression, char *pTrue, char *pFalse)
{
 if (bExpression)
 {
 success (pTrue);
 }
 else
 {
 failure (pFalse);
 }
}

typedef struct Rational
{
 int numerator;
 int denominator;
} Rational;

extern void loadErrorMessages ();
extern void setRational (Rational *psRational,

 int numerator, int denominator);

extern void getRational (Rational *psRational);

extern void printRational (const Rational *psRational);

extern bool isEqualRational (const Rational *psRational1,
 const Rational *psRational2);

extern Rational multiplyRational (const Rational *psRational1,
 const Rational *psRational2);

extern Rational divideRational (const Rational *psRational1,
const Rational *psRational2);

extern Rational addRational (const Rational *psRational1,
 const Rational *psRational2);

extern Rational reduceRational (const Rational *psRational);

Testing!

Practice

● Separate out success(), failure(), and assert()

to testing.c/testing.h

Example Project

Makefile

all: bin/testingExample

bin/testingExample:

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18

