Makefiles
and

Testing

Open Eclipse

* Open CS 300 example workspace

* Close All Projects

* Open MakeFileTesting

Makefiles

* Script that will build your code!
* Useful if you build your code twice!

 GNU Make
make -h

https://www.gnu.org/software/make/manual/html_node/Automatic-Variables.html

Makefile Rules

What To Build: What Is Needed To Build
How To Build

runMe: runMe.c
gcc -o runMe -g -Wall runMe.c

Makefile

target: dependency1 dependency?2
command1
command?2

|

tab!

Given a set of dependencies, make will only
run the necessary commands to build the
project. Build a dependency graph.

If a target is older than any of its dependencies
the commands are run to build the target

target and dependencies are files

Command line

zeus$> make tree

* looks for target named tree in Makefile and
checks to see If it needs to be built

zeus$> make

* looks for the first target in Makefile and checks
to see If It needs to be built

- by convention, this target is named all:

Makefile

11 CC=gcc

12 CFLAGS=-g -Wall

13

14# -g 1dnclude debug symbols in the executable so that the code can be
15# run through the debugger effectively

16 #

17# -Wall show all warnings from gcc

18

19

@ .PHONY: clean all

[

TARGETS=

™

5all:

in

I L T A R O R L T T A
L b2

|

Rational

* Close all projects

* Open Rational

Makefile

* Variables
e Makefiles can have variables such as CC and CCFLAGS

* Targets

* By default, Makefile targets are “file targets” used to create other
files

* .PHONY
* Declares targets that do not represent physical files
* target that is always out-of-date, thus, will always run when asked

* e.g. make clean

Makefile

10CC = gcc

11 CFLAGS = -g -Wall

12 RATIONAL_OBJECTS = bin/rationalDriver.o bin/rational.o
13 REDUCE_OBJECTS = bin/reduceRational.o bin/rational.o
14 ALL_OBJECTS = ${RATIONAL_OBJECTS} ${REDUCE_OBJECTS}

15

16 .PHONY: all clean valgrind tarball

e &

18all: bin/rationalDriver bin/reduceRational

19

20bin/rationalDriver: ${RATIONAL_OBJECTS}

21 ${CC} S${CFLAGS} -o bin/rationalDriver ${RATIONAL_OBJECTS}

35clean:

36 rm -f bin/rationalDriver S${ALL_OBJECTS}

37

38valgrindRational: bin/rationalDriver

39 wvalgrind -v --leak-check=yes bin/rationalDriver
40

41 tarball: clean

42 tar czf ../puNetlIdRational.tar.gz ../Rational
43

Dependency Graph

Testing with Asserts

e rationalDriver.c
success()

failure()

assert()

* You MUST reuse these functions to build your
test drivers!

static void success (char *pszStr)

{
printf ("SUCCESS: %s\n", pszStr);

}

static void failure (char *pszStr)

{
printf ("FAILURE: %s\n", pszStr);

}

static void assert (bool bExpression, char *pTrue, char *pFalse)

{

if (bExpression)

{

success (pTrue) ;

}

else

{
failure (pFalse);

}

typedef struct Rational

{

int numerator;
int denominator;

} Rational;

extern
extern

extern

extern

extern

extern

extern

extern

extern

void
void

void

void

bool

Rational

Rational

Rational

Rational

loadErrorMessages () ;
setRational (Rational *psRational,

int numerator, int denominator);
getRational (Rational *psRational) ;

printRational (const Rational *psRational);

isEqualRational (const Rational *psRationall,
const Rational *psRational2?);

multiplyRational (const Rational *psRationall,
const Rational *psRational2);

divideRational (const Rational *psRationall,
const Rational *psRational2?);

addRational (const Rational *psRationall,
const Rational *psRational2?);

reduceRational (const Rational *psRational) ;

Testing!

Practice

* Separate out success(), fallure(), and assert()
to testing.c/testing.h

Example Project

v == AssertTestingExample
» il Includes
» = bin
w = include
b |k testing.h
* (= SIC
b | main.c
b || testing.c
L@ Makefile

Makefile

all: bin/testingExample

bin/testingExample:

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18

