
Airport	Simulation	
	

Date	assigned:	 Wednesday,	October	31,	2018	
Date	due:	 	 Wednesday,	November	14,	2018		 	 	 	
Points:		 	 60	
	
Queue	
	
You	are	to	implement	the	Queue	ADT	in	a	file	called	queue.c	using	the	header	file	queue.h.		You	
can	find	this	header	file	on	zeus	in	/home/CS300Public/2018/06Files.		All	of	the	data	
structures	and	function	prototypes	are	defined	in	the	header	file.	Further,	each	function	prototype	
has	been	described	to	the	point	that	you	should	be	able	to	implement	each	function.		The	error	
codes	that	can	be	produced	are	listed	for	each	function.		Higher	precedence	error	codes	are	listed	
first.					

The	Queue	must	be	implemented	using	the	Priority	Queue	from	the	previous	assignment	as	the	
base	data	structure.	No	new	pqueue.h	or	list.h	files	are	necessary	for	this	assignment.		In	addition	
to	implementing	the	Queue	data	structure,	you	must	provide	a	Makefile	and	test	driver	
(queuedriver.c	that	produces	an	executable	named	queuedriver)	in	a	project	called	
GenericDynamicQ	that	thoroughly	tests	your	Queue.		The	driver	should	display	to	the	screen	a	
series	of	SUCCESS	or	FAILURE	messages	with	enough	description	that	a	user	can	quickly	spot	
broken	functionality.	

You	may	add	any	helper	functions	you	need	to	queue.c.		These	helper	functions	must	be	marked	
static	so	they	are	not	available	outside	the	module.		You	may	not	alter	queue.h	in	any	way.	

Masking	Priority	in	the	non-Priority	Queue.	
	
Your	Queue	enqueue	function	must	call	pqueueEnqueue	and	always	provide	a	priority	of	
zero.	This	will	cause	your	Queue	to	default	to	non-priority	queue	behavior.	
	
	
For	example:	 insert			
insert	
insert	
	
	
	
	 	
	 	
	 	
	 	
	
	 	

Priority: 0

Priority: 0

Priority: 0

Airport	Simulator	
	
You	are	to	use	your	Priority	Queue	and	Queue	modules	to	implement	an	airport	simulator.		You	
must	simulate	runway	usage	at	an	airport	by	determining	which	planes	take	off	or	land	on	each	
runway.		Each	plane	that	takes	off	flies	to	another	airport	and	each	plane	that	lands	has	taken	off	
from	a	separate	airport.	
	
You	will	need	to	write	airport.h.		
	
You	will	need	to	implement	a	project	named	Airport	that	includes	an	airport	module	(airport.h,	
airport.c)	that	provides	all	the	necessary	functionality	of	the	airport	and	an	airportdriver	
(airportdriver.c)	that	runs	your	airport	simulation.		You	may	also	include	a	driver	that	thoroughly	
tests	the	functionality	of	airport.c	(airporttestdriver.c).		I	strongly	encourage	the	creation	of	the	
test	driver.	
	
Airport	Simulation	
	
The	airport	simulator	is	a	turn-based	simulator.	Within	each	turn,	a	number	of	events	
specified	below,	occur.		A	clock	(an	integer)	is	used	to	track	the	number	of	turns.		Each	turn	
takes	one	clock	tick.		Your	simulator	needs	to	determine	which	planes	land	and	take	off	at	each	
turn.		
	
A	plane	may	be	sitting	on	the	ground	waiting	to	take	off	or	a	plane	may	be	in	the	air	waiting	to	
land.		The	planes	in	the	air	have	a	non-negative	integer	amount	of	fuel.		During	each	turn,	the	
fuel	of	each	in-air	plane	is	reduced	by	one.		Once	a	plane	in	the	air	reaches	zero	fuel	that	plane	
must	land	before	the	next	turn	or	that	plane	will	crash.		A	priority	queue,	using	fuel	as	priority,	
must	be	used	to	track	planes	waiting	to	land.		This	allows	planes	to	land	in	priority	order	(zero	
fuel	has	highest	priority,	1	unit	has	the	next	priority,	etc.).	
	
A	non-priority	queue	must	be	used	to	track	planes	waiting	to	take	off.		Planes	take	off	in	the	
order	in	which	they	entered	the	system	(FIFO).		Both	queues	must	store	the	clock	tick	(an	
integer)	in	which	the	given	plane	enters	the	system.		
	
The	airport	has	three	runways.		During	each	turn,	each	runway	may	either	land	exactly	one	
plane	or	allow	exactly	one	plane	to	take	off.		A	runway	may	not	both	land	and	launch	a	plane	in	
the	same	turn.		A	runway	may	also	sit	idle	for	a	turn	if	no	plane	needs	to	land	or	take	off.	
	
	 	

The	clock	starts	at	1.	
	
A	turn	includes	the	following	events	in	the	following	order:	
	

1. Read	a	line	of	data	from	the	file	“data/airport.txt”.		Each	line	describes	airplanes	that	are	
joining	the	takeoff	queue	and	airplanes	that	have	arrived	and	need	to	land.		Further,	the	
amount	of	fuel	on	board	for	each	newly	arrived	“need	to	land”	plane	is	provided.	Each	
plane	arrives	with	a	positive,	non-zero	integer	amount	of	fuel.		No	fuel	is	assigned	to	
planes	that	need	to	take	off.		At	most,	3	planes	may	join	the	takeoff	queue	and	an	
additional	3	planes	may	arrive	needing	to	land	(for	a	total	of	6	new	planes	in	the	system	
per	turn).		It	is	also	possible	that	zero	planes	enter	the	system	at	a	given	turn.	

2. Enter	the	new	planes	into	their	appropriate	data	structures.	
3. Decrement	each	“need	to	land”	plane's	fuel	by	1	(including	those	that	just	arrived).	
4. Those	planes	that	“need	to	land”	with	a	fuel	value	of	zero	must	be	assigned	runways	for	

landing.		When	all	three	runways	are	full	any	remaining	planes	in	the	air	with	zero	fuel	
crash.	

5. If	step	4	did	not	use	all	three	runways,	the	remaining	runways	are	used.		Service	(land	or	
take	off)	the	plane	at	the	head	of	the	larger	queue	and	remove	that	plane	from	its	queue.				
If	the	queues	are	the	same	size,	land	a	plane.		Repeat	step	5	until	all	runways	are	used	or	
both	queues	are	empty.	

6. Print	the	results	for	the	events	of	this	turn.	
7. Increment	the	clock	by	1.	
8. Return	to	step	1.		Stop	the	simulation	when	both	the	file	is	exhausted	and	both	queues	are	

empty.	

9. Print	the	summary	statistics.	
	
	 	

Airport	Output	
You	must	output	the	following	table	to	the	screen.		Before	the	first	clock	tick	and	after	each	
20th	clock	tick	reprint	the	table	header	(after	clock	tick	20,	40,	60,	etc).		The	first	line	of	
numbers	12345...	is	for	your	reference	and	is	not	to	be	printed.		Your	output	must	look	exactly	
as	below,	down	to	the	spaces.		There	are	0	spaces	after	the	final	digit	on	each	line	in	the	table.		
There	are	no	tabs.		Each	digit	is	right	aligned.		The	data	files	I	will	run	will	not	produce	any	
digits	that	overflow	too	far	to	the	left	to	disrupt	the	formatting	(at	most	we	will	have	9999	
clock	ticks,	for	example).		The	summary	statistics	are	printed	with	%g	or	as	integers	as	
appropriate.		The	data	file	that	produced	this	output	is	given	at	the	end	of	the	document.	

12345678901234567890123456789012345678901234567890123456789012345678901234567890
 | Planes Added | Runways | Queue Lengths
Time | Takeoff Landing (Fuel Remaining) | 1 2 3 Crash | Takeoff Landing
---- | ------- ------------------------ | --- --- --- ----- | ------- -------
 1 | 3 3 | 1 1 1 | E E E 0 | 3 0
 2 | 3 3 | 2 2 2 | T T T 0 | 3 3
 3 | 0 0 | - - - | E E E 0 | 3 0
 4 | 2 3 | 7 5 9 | T T L 0 | 3 2
 5 | 2 3 | 6 7 5 | L T L 0 | 4 3
 6 | 2 3 | 2 9 4 | L T L 0 | 5 4
 7 | 3 2 | 1 5 - | E T T 0 | 6 5
 8 | 2 2 | 6 2 - | T L T 0 | 6 6
 9 | 1 0 | - - - | T L T 0 | 5 5
 10 | 0 0 | - - - | L T L 0 | 4 3
 11 | 0 0 | - - - | T L T 0 | 2 2
 12 | 0 0 | - - - | L T L 0 | 1 0
 13 | 0 0 | - - - | T - - 0 | 0 0

Average takeoff waiting time: 3.5
Average landing waiting time: 2.73684
Average flying time remaining on landing: 1.31579
Number of planes landing with zero fuel: 7
Number of crashes: 0

Key	
A	–	in	the	Fuel	Remaining	column	means	there	was	no	plane	added	to	the	system	in	that	position.		
Time	3	above	shows	zero	planes	being	added	to	the	landing	queue	and	time	7	shows	only	two	
planes	being	added	to	the	landing	queue.		Therefore,	at	time	7	there	are	two	values	in	the	Fuel	
Remaining	columns	followed	by	a	–.		All	dashes	must	be	in	the	farthest	right	column	as	possible.	
	
Runways	are	marked	as	L,	T,	E,	or	–.		A	dash	means	the	runway	was	unused.		T	means	a	plane	
used	that	runway	to	take	off.		E	means	a	plane	used	that	runway	to	land	and	the	plane	had	zero	
fuel	remaining	(emergency	landing).		L	means	a	plane	used	that	runway	to	land	and	the	fuel	
remaining	was	greater	than	zero.		
	
Summary	Statistics	
You	must	track	the	necessary	data	to	produce	the	above	summary	statistics.		Average	takeoff	
waiting	time,	average	landing	waiting	time,	average	flying	time	remaining	on	landing	(average	
amount	of	fuel	remaining),	and	number	of	planes	landing	with	zero	(does	not	include	planes	
that	crashed).	The	summary	statistics	include	those	planes	that	crash.		

	
When	calculating	the	average	waiting	and	takeoff	time,	assume	that	planes	have	a	minimum	
waiting	time	of	1.	So,	even	if	a	plane	has	just	entered	the	queue	and	takes	off	right	away,	they	
still	have	waited	1	turn.	The	same	applies	to	landing.	
	
Data	File	
The	data	file	is	guaranteed	to	not	be	corrupt	or	invalid.		Zeros	in	various	spots	are	valid.		Fuel	
values	may	be	up	to	four	digits.		Airplane	crashes	do	not	mean	your	simulation	is	not	working.		
Some	data	files	I	provide	may	contain	airplane	crashes.		If	your	airport	simulator	crashes	that	
is	an	entirely	different	story.	
	
Each	line	in	the	data	file	contains	the	following	integers,	separated	by	a	single	space,	in	this	
order:	
	
Number	Of	New	Planes	That	Want	To	Takeoff		
Number	Of	New	Planes	That	Want	To	Land	
The	amount	of	fuel	on	board	for	new	landing	plane	1	
The	amount	of	fuel	on	board	for	new	landing	plane	2	
The	amount	of	fuel	on	board	for	new	landing	plane	3	
	
The	amount	of	fuel	is	zero	if	there	is	no	plane	in	that	position.	

3 3 1 1 1
3 3 2 2 2
0 0 0 0 0
2 3 7 5 9
2 3 6 7 5
2 3 2 9 4
3 2 1 5 0
2 2 6 2 0
1 0 0 0 0

	
	

For	each	project:	
1. Your	code	is	to	be	written	in	C	using	Eclipse.	Programs	written	in	other	environments	will	

not	be	graded.			
2. The	Makefile	must	contain	the	necessary	targets	to	build	each	driver	as	well	as	a	clean,	

tarball,	and	valgrind	targets	similar	to	the	identically	named	targets	in	your	previous	
assignments.		Typing	make	on	the	command	line	must	build	each	driver.	

3. Test	one	function	at	a	time.	This	will	lessen	your	level	of	frustration	greatly.	
4. You	are	to	use	the	coding	guidelines	from	the	coding	standards.	
5. The	only	changes	to	existing	projects	is	to	fix	bugs.	

	

• Relying	on	three	previously	constructed	projects	can	
complicate	your	life	as	bugs	in	other	projects	are	
found	and	fixed.		Start	early!	
	

• For	scale,	I	wrote	about	500	(non-commented)	lines	
of	code	for	this	project	(airport.c,	airportdriver.c).	
	

• Your	List	driver,	PriorityQueue	driver,	and	Queue	
driver	must	still	compile	and	run.	

	

Queue		
	

1. IMPORTANT:		When	implementing	your	queue	module,	you	are	to	use	the	functions	from	
the	GenericDynamicPriorityQ	module	and	nothing	from	GenericDynamicList	
	

Airport	Simulator		
1. Submit	a	file	called	cs300_6_PUNetID.tar.gz	by	9:15am	on	the	due	date.		This	file	must	

include	your	Airport	module	as	well	as	GenericDynamicQ,	GenericDynamicPriorityQ,	
and	GenericDynamicList	projects.	Each	project	is	to	be	complete	such	that	I	can	type	
make	in	any	of	the	projects	and	execute	any	driver	I	so	desire.	Make	sure	you	have	all	
dependencies	set	correctly	and	that	each	Makefile	builds	the	appropriate	object	files	
before	building	the	executable.	Also,	each	module's	Makefile	must	have	a	target	called	
valgrind	such	that		typing	make	valgrind	executes	the	valgrind	command.	I	will	clean	all	
projects	BEFORE	typing	make	in	the	Airport	project.	

2. Running	valgrind	from	the	command	line	requires	the	following	type	of	line	in	your	
Makefile	

valgrind:

 valgrind –v -–leak-check=full --show-leak-kinds=all
bin/airportdriver data/airport.txt

Running	valgrind	from	Eclipse	requires	that	you	right	click	on	the	executable	and	then	go	
to	Profiling	Tools	Configurations	and	add	data/airport.txt	to	the	arguments	tab.	
	

3. Data	file	input	is	to	be	from	the	command	line.	
4. Turn	in	a	color,	double	sided,	stapled	packet	of	code	by	the	same	deadline	in	1.		The	packet	

must	be	in	the	following	order:	
1. airportDriver.c	(.h	then	.c	if	you	have	both,	otherwise	just	.c)	
2. airport.c	(.h	then	.c	if	you	have	both)	
3. Any	extra	.h/.c	pairs	you	have.	(do	not	include	any	code	from	previous	projects)	
4. Makefile	
5. Do	NOT	print	airportTestDriver.c	if	you	write	it.	

	

