

Assignment 5: Priority Queue
	
Topic(s):	 	 Priority	Queues,	Code	Reusability,	More	Advanced	Makefiles,	Debugging,		
	 	 	 Testing	
Date	assigned:	 Wednesday,	October	17,	2018	 	
Date	due:		 	 Wednesday,	October	31,	2018,	9:15	am.	BOO!	
Points:		 	 40	pts	
	

For	this	assignment,	you	are	to	implement	a	Generic	Dynamic	Priority	Queue	(GDPQ)	ADT	in	a	file	
called	pqueue.c	using	the	header	file	pqueue.h.	You	can	find	this	header	file	on	zeus	in	
/home/CS300Public/2018/05Files.	All	of	the	data	structures	and	function	prototypes	are	
defined	in	the	header	file.	Further,	each	function	prototype	has	been	described	to	the	point	that	
you	should	be	able	to	implement	each	function.	The	error	codes	that	can	be	produced	are	listed	for	
each	function.	Higher	precedence	error	codes	are	listed	first.		

The	GDPQ	must	be	implemented	using	the	Generic	Dynamic	List	(GDL)	from	the	previous	
assignment	as	the	base	data	structure.	We	will	be	reusing	this	GDPQ	later	on,	so	make	sure	you	
have	completely	tested	and	debugged	each	operation.		

In	addition	to	implementing	the	GDPQ	data	structure,	you	must	provide	a	Makefile	and	test	driver	
(pqueuedriver.c	that	produces	an	executable	named	pqueuedriver)	that	thoroughly	tests	your	
GDPQ.	The	driver	must	display	to	the	screen	a	series	of	SUCCESS	or	FAILURE	messages,	with	
enough	description	that	a	user	can	quickly	spot	broken	functionality.	

You	may	add	any	helper	functions	as	needed	to	pqueue.c.	These	helper	functions	must	be	marked	
static	so	they	are	not	available	outside	the	module.	You	may	not	alter	pqueue.h	in	any	way.	

1. Your	code	is	to	be	written	in	C	using	Eclipse.	Programs	written	in	other	environments	will	
not	be	graded.	Create	an	Eclipse	project	named	GenericDynamicPriorityQ.	This	project	
must	contain	the	directories:	src,	include,	and	bin	with	a	Makefile	at	the	same	level	as	
these	directories.		

2. The	Makefile	must	contain	the	necessary	targets	to	build	the	pqueuedriver	as	well	as	a	
clean,	valgrind,	and	tarball	targets.	Typing	make	on	the	command	line	must	build	
pqueuedriver.	

3. Submit	a	file	called	cs300_5_PUNetID.tar.gz	using	the	submit	script	by	9:15am	on	the	day	in	
which	the	assignment	is	due.	This	file	must	include	your	GenericDynamicPriorityQ	AND	
your	updated	(if	necessary)	GenericDynamicList	projects.	

4. Submit	a	color,	double	sided,	stapled	packet	of	code	by	the	same	deadline	in	3.		The	packet	
must	be	in	the	following	order:	
	 Priority	Queue	Driver	(.h	then	.c	if	you	have	both,	otherwise	just	.c)	
	 pqueue.c	(do	not	print	pqueue.h)	
	 Any	extra	.h/.c	pairs	you	have.	(do	not	include	any	code	from	the	List	project)	
	 Makefile	

5. Test	one	function	at	a	time.	This	will	lessen	your	level	of	frustration	greatly.	
6. You	are	to	use	the	coding	guidelines	from	V6.3	of	the	coding	standards.	

7. The	only	changes	to	GDL	you	can	make	are	to	fix	bugs	in	the	.c	files.	
8. You	must	insert	GenericDynamicPriorityQ	into	your	Subversion	repository;	

GenericDynamicList	must	already	be	in	Subversion	and	any	bug	fixes	must	be	committed	to	
Subversion.	

9. IMPORTANT:	When	implementing	your	GDPQ	ADT,	you	are	to	use	the	functions	from	the	
GDL	module	and	not	access	any	GDL	data	directly.	As	an	example,	you	must	use	the	
function	lstSize	to	determine	the	size	of	the	list.	Failure	to	access	information	correctly	will	
result	in	losing	major	design	points.	

	
Goals	for	this	assignment:	

	
1. Reuse	your	GDL	code.	
	
2. Code	and	test	your	program	one	function	at	a	time.	
	
3. Write	efficient/clean	code	
	
4. Use	the	debugger	to	effectively	develop	a	correct	solution	
	
5. Thoroughly	test	your	code.	
	
6. Write	code	with	no	Valgrind	errors.	

	
Priority	in	the	Queue.	
	
You	must	implement	priority	in	your	queue	by	inserting	items	into	the	queue	using	the	priority	
value	provided	by	the	user.	A	priority	of	zero	is	the	highest	priority.		A	newly	inserted	item	
must	be	inserted:	

1) ahead	of	all	items	with	a	lower	priority	
2) behind	all	items	with	the	same	priority	

	
For	example:	
The	Priority	Queue	on	the	
right	already	contains	
some	data.			The	following	
inserts	will	add	data	
at	the	marked	points.		
	
insert	Priority	0	
insert	Priority	2	
insert	Priority	10	
	
	
♦	The	function	pqueueChangePriority	accepts	an	integer	(positive	or	negative)	and	adds	that	
integer	to	the	priority	of	every	item	in	the	queue.	
	
♦	There	is	only	one	deadline.		I	expect	you	to	start	this	project	soon.	Your	priority	queue	
implementation	will	likely	be	smaller	than	your	pqueuedriver.	

Priority: 1

Priority: 2

Priority: 6

	
Using	Eclipse,	Makefiles,	and	Multiple	Projects.	
	
Since	your	GDPQ	relies	on	your	GDL,	which	is	in	another	Eclipse	project,	your	Makefile	may	
contain	lines	like	the	following.	
	
bin/pqueue.o: src/pqueue.c include/pqueue.h ../GenericDynamicList/include/list.h
 ${CC} ${CFLAGS} -c src/pqueue.c -o bin/pqueue.o

In	this	example	line,	pqueue.o	relies	on	pqueue.c	and	pqueue.h	from	the	current	GDPQ	project	as	
well	as	the	header	file	list.h	from	the	GDL	project,	which	exists	up	a	directory	(to	your	workspace	
root)	and	then	down	in	the	GDL	project's	include	directory.	Your	driver	will	also	need	to	depend	
on	the	list.o	file	in	the	GDL	project.	
	
If	you	want	to	rebuild	list.o	via	your	GDPQ	Makefile	you	may	need	a	line	like	this	in	your	GDPQ	
Makefile.1	
	
../GenericDynamicList/bin/list.o: ../GenericDynamicList/include/list.h \
 ../GenericDynamicList/src/list.c
 cd ../GenericDynamicList; make bin/list.o

This	moves	to	the	GDL	directory	and	invokes	make.	The	Makefile	in	GDL	is	read	and	list.o	is	
rebuilt	if	necessary.	Note	that	make	executes	each	line	of	your	file	with	a	new	shell	so	if	you	cd	
on	one	line	and	run	a	command	on	the	next	line,	the	command	is	run	as	if	the	cd	had	not	been	
run.	
	
You	are	most	likely	going	to	run	into	Eclipse	problems	with	this	project.	Namely,	Eclipse	may	
not	see	an	update	to	the	GDL	data	structure	while	you	are	coding	in	the	GDPQ	data	structure	
and	may	produce	errors	even	if	the	Makefile	succeeds	in	building	your	.o	and	executable	files.	
	
If	you	right	click	a	project,	choose	Properties,	and	select	Project	References	you	can	mark	which	
other	projects	this	project	relies	on.	(GenericDynamicPriorityQ	relies	on	GenericDynamicList,	for	
example).	This	helps	Eclipse	determine	where	to	look	for	data	type	definitions	and	header	files.	
Eclipse	is	not	perfect.	Sometimes	projects	get	out	of	sync	and	you	need	to:	clean	and	build	each	
project,	right	click	a	project,	choose	Index,	and	Rebuild.			
Another	way	to	set	the	references	is:	Right	click	on	Project	>	Properties	>	C/C++	General	>	Paths	&	
Symbols	>	References2	
	

If	you	have	Makefile	problems,	see	me	early.	
	
I	expect	you	to	start	this	project	early.		This	code	will	be	reused	in	subsequent	assignments.	
Further,	you	are	reusing	code	from	GDL!	
	 	

1 http://crawlicious.com/wp/2009/06/11/make-change-dir/ (no longer valid, check the Wayback Machine).

2 http://stackoverflow.com/questions/1270799/eclipse-cdt-make-a-project-rebuild-when-a-library-built-in-another-
project-was-r

		
Some	helpful	necessary	information.	
	
Here	is	information	that	will	help	you	successfully	implement	your	Priority	Queue.	
	
	
For	a	priority	queue	given:	 int	value	=	1;	
	 	 	 	 pqueueEnqueue	(psQueue,	&value,	sizeof	(int),	5);	
	 	 	 	 ++value;	
	 	 	 	 pqueueEnqueue	(psQueue,	&value,	sizeof	(int),	6);	
	

	
	
The	5,1	and	6,2	are	each	stored	as	a	PriorityQueueElement.		Your	PriorityQueue	MUST	insert	a	
PriorityQueueElement	into	the	GenericDynamicList.		The	user	of	your	PriorityQueue	never	sees	or	uses	
PriorityQueueElement.		The	data	the	user	gives	your	priority	queue	(void*)	goes	into	the	void*	in	the	
PriorityQueueElement	(malloc(size)	then	memcpy!).				You	just	pass	the	address	of	the	
PriorityQueueElement	and	the	size	of	the	PriorityQueueElement	to	the	GenericDynamicList.	
	
DANGER!	
	
Since	the	data	you	put	into	the	GenericDynamicList	contains	a	pointer,	lstTerminate()	cannot	free	all	the	
dynamic	memory!		pqueueTerminate()	MUST	walk	the	list,	delete	each	element	(lstDeleteCurrent()),	
and	then	free()	the	pointer	inside	PriorityQueueElement	(returned	by	lstDeleteCurrent()).	Once	the	list	
is	empty,	call	lstTerminate().	
	
Read	this	page	again	at	least	twice.	
	

