

Assignment 4: Dynamic List

Topics:	 Singly-linked	list,	Dynamic	Memory,	Valgrind,	Procrastination,		

Reading	Comprehension	
Date	assigned:		 Wednesday,	October	3,	2018	
Date	due:		 	 Part	1:	Wednesday,	October	10,	2018	
	 	 	 Part	2:	Wednesday,	October	17,	2018	
Points:		 	 40	
	

For	this	assignment,	you	are	to	implement	the	List	ADT	in	a	file	called	list.c	using	the	header	file	
list.h.		You	can	find	this	header	file	on	zeus	in	/home/CS300Public/2018/04Files.		All	of	the	
data	structures	and	function	prototypes	are	defined	in	list.h.	Further,	each	function	prototype	has	
been	described	to	the	point	that	you	should	be	able	to	implement	each	list	function	in	the	file	list.c.		

In	addition	to	implementing	the	list	data	structure,	you	must	provide	a	Makefile	and	test	driver	
(listdriver.c	that	produces	an	executable	named	listdriver)	that	thoroughly	tests	your	list	
functions.	The	listdriver	must	display	to	the	screen	a	series	of	SUCCESS	or	FAILURE	messages	with	
enough	description	that	a	user	can	quickly	spot	broken	list	functionality.	Code	your	driver	for	
SUCCESS	tests.	No	test	in	your	driver	should	Fail.		If	a	FAILURE	happens,	your	program	is	to	
terminate.	

You	may	add	any	helper	static	functions	you	need	to	list.c.		You	may	not	alter	list.h	in	anyway.	

1. Your	code	is	to	be	written	in	C	using	Eclipse.	Programs	written	in	other	environments	will	
not	be	graded.		Create	an	Eclipse	project	named	GenericDynamicList.		This	project	must	
contain	the	directories:	src,	include,	and	bin.	

2. The	Makefile	must	contain	the	necessary	targets	to	build	the	listdriver	as	well	as	a	clean,	
valgrind,	and	tarball	targets.	Typing	make	on	the	command	line	must	build	listdriver	in	the	
bin	directory.	

3. Your	program	must	not	have	any	Valgrind	errors.	
4. Submit	a	color,	double-sided,	stapled	packet	of	code	by	that	same	deadline.		The	packet	

must	be	in	the	following	order:	
	
	 List	Driver	(.h	then	.c	if	you	have	both,	otherwise	just	.c)	
	 list.c	(do	not	print	list.h)	
	 Any	extra	.h/.c	modules	
	 Makefile	

5. Test	one	function	at	a	time	and	profile	with	Valgrind.	This	will	lessen	your	level	of	
frustration	greatly.	Commit	after	writing	and	testing	a	significant	function.	You	will	not	be	
sorry.	

6. You	are	to	use	the	coding	guidelines	of	the	coding	standards	on	the	CS300	Web	page.	
	

	Goals	for	this	assignment:	
	
1. Code	and	test	your	program	one	function	at	a	time.	
2. Write	efficient/clean	code	
3. Use	the	debugger	and	Valgrind	to	effectively	develop	a	correct	solution	
4. Thoroughly	test	your	code.	
5. Fully	understand	Makefiles.	
6. Continue	to	use	Subversion.	

	
The	list.h	header	file	as	well	as	a	list	of	error	codes	that	each	function	can	produce	are	part	of	
list.h.		Further,	the	error	codes	are	listed	in	order	of	precedence.		If	a	function	can	produce	
multiple	errors,	the	function	must	return	the	error	code	first	on	the	list.	
	
Since	the	interface	for	the	list	may	be	hard	to	understand	at	first,	here	is	a	very	small	example	
of	how	to	walk	a	list	and	print	out	every	element.		For	brevity,	no	error	checking	is	done.	

Sample Code

Run Results of

Sample Code

Part	A:	Here	is	a	list	of	the	functions	that	must	be	completed	for	Part	A	and	the	order	in	which	I	
recommend	you	implement	each	function:	

1. lstLoadErrorMessages	
2. lstCreate	
3. lstInsertAfter	
4. lstTerminate	
5. lstSize	
6. lstIsFull	
7. lstIsEmpty	
8. lstFirst	
9. lstNext	
10. Don’t	forget	to	build	a	driver	that	tests	each	of	these	functions!	

	
Submit	your	assignment	as	cs300_4A_punetid.tar.gz	
	
Part	B:	Implement	all	functions	in	list.h.		Add	code	to	your	driver	to	test	all	of	the	list	functions.	
Submit	your	solution	as	cs300_4B_punetid.tar.gz.	
	
lstInsertBefore	and	lstDeleteCurrent	are	difficult.			
	
To	view	data	using	a	void*,	you	will	need	to	use	the	Expressions	tab.		In	the	debugger,	you	will	
need	to	enter	expressions	in	the	Expressions	tab.		(Window	|	Show	View	|	Expressions)	The	
Expressions	tab	is	shown	below.	
	
You	can	click	Add	new	expression	and	type	in	a	C	code	expression	such	as:	
	(int)psListElement->pData	
	

	
	
	
I	expect	you	to	start	this	project	early.		This	code	will	be	reused	in	subsequent	assignments.	
Coding	this	last	minute	will	cause	headaches	for	much	of	the	rest	of	the	course!	
	
To	be	on	schedule,	you	should	have	your	Eclipse	project	build	and	Makefile	done	by	
Friday,	Oct	5!	
	
	
Go	back	and	read	the	assignment	carefully	one	more	time!	
	 	

Use	this	page	to	draw	yourself	some	Lists!	

