

 1

Assignment	#2	
	
Topic(s):	 	 C,	Makefiles,	Writing	modular	code,	Stack	ADT	
Date	assigned:	 	 Monday,	September	10,	2018		 9:15	am	
Date	due:	 	 Monday,	September	24,	2018		 9:15	am	
Points:	 	 	 25	
	
The purpose of this assignment is to have you implement a Stack ADT using a static array of pointers and typeless dynamic
memory. This way, you can push any datatype onto your stack; that is, your stack is generic!!!! How cool is that???

Specifically, for this assignment you will:

1) create an Eclipse project called GenericStaticStack using:
a. an include file called stk.h, which is the stack interface
b. a source file stk.c which is the stack implementation
c. a source file stkdriver.c which is the stack test driver that uses asserts to

thoroughly test your stack functions.
d. a make file called Makefile that is used to build all object files and

executables for the project
i. targets: bin/stkdriver, clean, tarball

A copy of stk.h exists on zeus in /home/CS300Public/2018/02Files. You are to copy stk.h from zeus and implement each
function prototype specified in stk.h in a file called stk.c. Do not modify stk.h in any way or you will lose significant points.
Attached is a simple driver that tests some of your stack functions.
	
To	successfully	complete	this	assignment:	
	
1. Implement	each	of	the	functions	for	stk.h	one	at	a	time	in	a	file	called	stk.c.	Test	each	function	in	a	

driver	stkdriver.c.	Create	a	Makefile	for	the	project	GenericStaticStack.	This	time,	when	you	create	a	
C	Project,	Select	Makefile	project	(instead	of	Executable	->	Hello	World	ANSI	C	Project)	and	Empty	
Project.	A	Makefile	is	a	textfile	created	at	the	same	level	as	the	folders	include,	src,	and	bin.	The	
Rational	project	is	a	great	example.	Please	see	me	if	you	have	questions	regarding	Rational.	

2. Once	you	have	implemented	each	function,	you	are	to	write	a	driver	that	extensively	tests	each	of	
the	functions	in	your	program.	Part	of	your	grade	will	be	based	on	how	well	your	driver	tests	each	
and	every	function	in	stk.h.	Note:	The	driver	that	I	supplied	you	is	not	a	good	example	of	
extensively	testing	each	of	your	functions.	Your	driver	must	have	many	well	thought	out	assert	
statements.	You	will	also	need	loops	to	write	a	proper	driver.		

3. Each	stkXXXX()	function	must	print	any	appropriate	error	message	to	the	screen	via	stderr.	
For	instance: fprintf(stderr, “%s\n”, szErrorString);

	
Part	A	(Due:	Monday,	September	17,	2018)	
	
For	this	part	of	the	assignment,	you	are	to	implement	stkLoadErrorMessages,	stkCreate,	stkIsFull,	
stkIsEmpty,	and	stkSize.	Your	driver	is	to	test	each	of	these	functions	for	correctness.	Once	you	have	
completed	this	portion	of	the	assignment,	you	are	to	submit	your	solution.	To	do	so,	
	

1) clean	your	project	and	then	create	a	tarball	called	cs300_2A_punetid.tar.gz	(that	is	“your”	
punetid)	that	contains	all	files	for	correctly	compiling	your	program	on	zeus.	How	to	do	this:	

a. make	tarball	
2) use	scp	to	transfer	the	tarball	to	zeus	for	testing	
3) once	you	are	sure	your	program	works	on	zeus	from	the	command	line,	then	submit	your	

tarball	as	you	did	in	assignment	#1	
	
	
	 	

 2

Part	B	(Due:		Monday,	September	24,	2018)	
	
Implement	the	rest	of	the	functions	for	stk.c	and	write	a	driver	that	extensively	tests	each	of	your	
functions.		You	must	have	at	least	two	stacks	in	your	driver,	one	that	contains	ints	and	one	that	contains	
characters.		I	will	write	several	test	drivers	to	test	your	program	when	grading.	
	
As	in	part	A,	create	a	new	tarball	called	cs300_2B_punetid.tar.gz,	scp	a	copy	to	zeus	for	testing	
BEFORE	submitting	your	final	solution.	
	
If	you	find	any	mistakes	or	you	think	there	are	discrepancies,	please	email	me	ASAP.	I	will	check	into	
your	issue,	fix	as	necessary,	and	email	the	entire	class	if	changes	are	made.	
	
Hints:	
	

1) Many	of	you	will	find	that	setting	up	your	project	correctly	in	Eclipse	(including	a	proper	
Makefile)	will	be	difficult	&	frustrating.	The	sooner	you	get	this	set	up,	the	better	AND	you	can	
see	me	EARLY	for	questions.		

2) The	first	function	you	need	to	implement	is	stkLoadErrorMessages.	Then	write	a	minimal	
stkdriver.c	that	calls	stkLoadErrorMessages.	Finally,	write	the	Makefile	and	test.	If	you’ve	
written	any	more	code	than	this	and	you	have	Makefile	issues,	I	will	not	help	you	until	you	
show	me	only	the	minimal	code	I	just	asked	for.	

3) Pointers	may	also	be	another	level	of	frustration,	so	here	is	a	little	sample	code	that,	if	you	
understand	the	code,	will	help	you	with	the	programming	portion	of	part	B:	

4) You	will	need	to	use	memcpy	as	opposed	to	strncpy.	
	

typedef struct String *StringPtr;
typedef struct String
{
 char data[32];
 int size;
} String;
…
String sTheString;
StringPtr psTheString = &sTheString;
psTheString->data[0] = ‘\0’; // Now sTheString is the null string
psTheString->size = 0;
strncpy (psTheString->data, “Hello CS300”, 32);
psTheString->size = strlen (psTheString->data);
puts (psTheString->data);

Error	Processing	
	

1. Check	any	parameter	pointer	for	NULL	and	report	an	appropriate	error	message	for	a	
NULL	pointer.	For	instance,	if	psStack	is	NULL	in	stkCreate,	report	
STK_NO_CREATE_ERROR.	Also,	check	for	empty	and	full	where	appropriate.	

2. I’ve	tried	to	make	the	error	messages	descriptive	in	their	use.	Feel	free	to	stop	on	by	
and	ask	questions	regarding	error	handling.	

	
	

