Trees

November 18, 2011

Previous

- Linear structures
 - Arrays
 - Lists
 - Stacks
 - Queues
- Trees are non-linear

A Picture & Definitions

Root

Parent

Child

Leaf

Non-leaf

Siblings

Ancestors

Descendants

Subtree

Level

Depth/Height

Binary Tree

Quad Tree

Just so you know that not all trees are binary...

Tree ADT

- Let's define the struct Tree
 - to hold ints

```
typedef struct Tree
{
```

```
} Tree;
```

Example Usage

- Pre-fix expression
 - put the operator first
 - 4 + 2
 - + 4 2

+ - 2 1 * 9 1

Traversals

- inorder: Left, Node, Right
- preorder: Node, Left, Right
- postorder: Left, Right, Node

Binary Search Tree (BST)

Consider an arbitrary node in a tree called A.

All values in the left subtree are less than the value in A.

All values in the right subtree are greater than the value in A.

Example

Insert the following items
 100 34 56 99 77 23 1 0 2 98

Code

bstFind(Tree, int)

bstInsert(Tree,int)

bstFindLevel(Tree,int)

bstFindMaxDepth(Tree)

bstDelete(Tree, int)

Problems

What are the main problem with trees?