

Hash Tables

http://fscked.org/writings/225notes/week13/week13.html

http://en.wikipedia.org/wiki/Hash_table

Nov 9, 2011

Hash Table

● A hash table (or hash map) is a data structure
that maps keys (identifiers) into a certain
location (bucket)

● A hash function changes the key into an index
value (or hash value)

Hash
Function

Bucket Data

01 Ryan, D
android@cs

02

03 Khoja, S
capstone@cs

04

05

06 Williams, C
data@cs

07

Ryan, D

Williams, C

Khoja, S

hash(Ryan, D) = 01
hash(Williams, C) = 06
hash(Khoja, S) = 03

Keys

The Hash Table has a
fixed length. We'll see
how to add space
dynamically later.

Collisions

● Perfect Hash - each key maps to an empty bucket
● Rare!

● Collisions occur where two different keys map to
the same bucket

● Solution?

hash(Ryan, D) = 01
hash(Knuth, D) = 01

Hash Function

● Hash function – compute the key's bucket
address from the key
● some function h(K) maps the domain of keys K into

a range of addresses 0, 1, 2, … M-1

The Problem

● Finding a suitable function h
● Determining a suitable M
● Handling collisions

Hash Function

● Mid Square
● (turn the key into an integer)
● square the key
● take some number of bits from the center to form

the bucket address

Advantages?

Disadvantages?

Example

● Problem: Let's assume that the key value is
simply the sum of the ASCII values squared. If
the key value is 16-bits and we take the middle
8-bits:

a) How big is the hash table?

b) What is the range of bucket addresses?

c) Where does the key AB map to in the hash
table?

Implementation section 2.9

● How do we access the middle 8 in an integer?

// assume 4 byte integers
unsigned int key = 0x1231a456;
unsigned int middle;

middle = (key & 0x000ff000) >> 12;

printf("%08x %08x\n", key, middle);

http://www.eskimo.com/~scs/cclass/int/sx4ab.html

One Hex-digit
is 4 bits

pad with zero 8 wide hexadecimal output

Hash Function

● Division Hashing
● bucket = key % N
● N is the length of the hash table AND a prime

number

a) How big is the hash table?

b) What is the range of bucket addresses?

c) Where does the key AB map to in the hash
table?

Advantages?

Disadvantages?

Collision Handling

● Open Addressing
● If both K and C map to the same bucket we have a

collision
– K and C are distinct
– K is inserted first

● To resolve using OA, find another unoccupied space for C

BUT: We must do this systematically so we can find C
again easily!

● Analysis: (summation of the # of probes to locate
each key in the table) / # of keys in the table

Open Addressing

● Find another open bucket
● bucket = (h(K) + f(i)) % N

● N is the length of the table
● h(K) : original hash of key K
● f(i) : i is the number of times you have hashed and

failed to find an empty slot
● First hash is:

– bucket = (h(K) + f(0)) % N
– f(0) = 0

Linear Probing

● f(i) = i

● Example:
h(Kn) = n % 11
Insert
M13
G7
Q17
Y25
R18
Z26
F6

Bucket Data

0

1

2

3

4

5

6

7

8

9

10

Primary Clustering!

Primary Clustering

● Primary Clustering - this implies that all keys
that collide at address b will extend the cluster
that contains b

Quadratic Probing

● f(i) = i^2
● Example:

h(Kn) = n % 11
Insert
M13
G7
Q17
Y25
R18
Z26
F6

Bucket Data

0

1

2

3

4

5

6

7

8

9

10

Secondary Clustering!

Secondary Clustering

● Secondary Clustering - is when adjacent
clusters join to form a composite cluster

Double Hash

● f(i) = h2(k) * i
● h2(k) is some second hash function
● unique probe sequence for every key

● bucket = (h(K) + h2(K) * i) % N

● h2(k) should be relatively prime to N for all k
– don't produce zero

● Example
– h(k) = k % N

h2(k) = 1 + (k % (N - 1))

Rehash

● Reallocate the table larger and reinsert every
element

Chaining (Open Hashing)

● Each bucket is the head of a linked list
● if you hash a key to a bucket, insert the data into

the list
● insert at front, back, or in sorted order.

– why would this decision matter?

Problem

● Hash the keys M13, G7, Q17, Y25, R18, Z26,
and F6 using the hash formula h(Kn) = n mod 9
with the following collision handling technique:
(a) linear probing, (b) chaining

● Compute the average number of probes to find
an arbitrary key K for both methods.

● avg = (summation of the # of probes to locate
each key in the table) / # of keys in the table

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19

