
  

Some Basic Concepts

Software Life Cycle

Requirements – specifications for a given project that includes what is to be input and 
what is to be output.

Analysis – the problem is broken down into manageable pieces typically using a top-
down approach where the program is continually refined into more manageable 
pieces. During this phase there are several alternative solutions that are developed 
and compared. We will talk how to compare these pieces shortly.

Design – this continues the work of the analysis phase and includes data objects the 
program needs and the operations performed on the data objects. The data types 
during this phase are ADTs and no implementation details exist during this phase.

Refinement and coding – actual representations for each ADT are developed and 
algorithms for each operation are written.

Verification - program correctness must be developed including extensive testing 
using various datasets.



  

Once You're Done

• Are the original specifications met by the program?

• Is the program implemented correctly and work 
correctly?

• Is there documentation that shows how to use the 
program?

• Does the program contain well defined modules and 
strive for reusability?

• How readable is the code?

• How efficiently and effectively is storage used?

• Does the program have an acceptable running time?



  

Two types of performance

This algorithm/datastructe takes N^3 steps to run
– We care about this one

This loop takes 10 instructions but I can rewrite it to 
take 9!

– We don't care about this one in this class

– Later in life, this will be important

– Many people use this as an excuse to write bad code



  

But I can save one instruction...

●You are not smarter than the compiler writers

gcc -O# -o runMe driver.o stack.o -Wall

# is zero to 3
● Zero = default, no speed optimization

● best for debugging
●1,2,3 increasing levels of speed optimization

● Almost no change of the debugger working

http://gcc.gnu.org/onlinedocs/gcc/Optimize-Options.html



  

Complexity

Questions 6. and 7. are best identified by the terms 
“Space Complexity” and “Time Complexity.” 

For each of the data structures we will discuss in this 
course, we will want to know the associated space 
complexity and time complexity.

We need some method to talk about complexity issues



  

Big-O

 Algorithms are measured according to a notation called 
"Big-O" notation (e.g. O(N)). 

 How does the execution time change with a change in 
data size?

 Big-O measures the computational complexity of a 
particular algorithm based on the number steps relative 
to some data size, N 

– Number of items
Add more data, runtime goes 
up.  By how much?



  

What is N? Why?
#define TRUE 1
#define FALSE 0

int isSorted (const int nums[], int howmany)
{
  int bSorted;
  int i;

  bSorted = TRUE;

  for (i = 0; i < (howmany - 1); ++i)
  {
    if (nums[i] > nums[i + 1])
    {
      bSorted = FALSE;
    }
  }

  return bSorted;
}

How many times is each 
statement executed per 
invocation of isSorted()?

What is the overall 
complexity?   O(   ) ? 



  

Complexity Scenerios

When looking at computational complexity, we 
typically examine three scenarios: 

• Best Case Performance

• Average Case Performance

• Worst Case Performance



  

Complexity Categories

Typically we find that computational complexities fall into polynomial, 
logarithmic, or exponential time and are named: 

• O(1) – constant (what might fall into this category?)

• O(log
2
N) – logarithmic

• O(N) – linear

• O(Nlog
2
N) – Log linear

• O(N2) – quadratic

• O(N3) – cubic

• O(2N) – exponential

• O(N!) - factorial



  

Growth Rates

Let's examine how the complexity grows for 
various computing times. 

N     log
2
N     Nlog

2
N     N2   N3    2n

2         1          2     4    8     4

4         2          8    16   64    16

8         3         24    64  512   256

16        4         64   256 4096 65536



  

Growth Rates Graphically
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log scale, y-axis
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Identify Big-O

Function
Best Worst Average

strLength

strEqual

strConcat

strAppend

strReverse

strClear

strCopy

What is N?

typedef struct {
  int length;
  char data[1024];
} String;



  

Formal Complexity Analysis

 Formally, we define Big-O as follows:

Function f(n) is O(g(n)) iff there exist positive 
constants c and n0 such that f(n) <= cg(n) for all 
n, where n >= n0.

Upper Bound



  

What is happening?

for (i = 0; i < howmany; ++i)

{

  for (j = i + 1; j < howmany; ++j)

  {

    if(nums[i] < nums[j])

    {

      temp = nums[i];

      nums[i] = nums[j];

      nums[j] = temp;

    }

  }

}



  

What is the Computing Complexity?

In this case, the N we are talking about is the 
variable howmany. What we need to figure out 
is how many times the statement below is 
executed. 

    if(nums[i] < nums[j])

Why do we ignore the stuff inside the if() ?



  

Number of Iterations

For various values of i, let's take a look: 
i     # of iterations

0     N - 1

1     N - 2

2     N - 3

and you get the picture



  

What is f(n)?

 This means that if the function f  
represents the number of executions of 
the above segment, then f(N) = (N-1) + 
(N-2) + (N-3) + ... + 2 + 1. 

 Those who have taken a statistics class or 
studied summations can see that this 
equates to f(N) = N(N-1)/2. 

 We can see that this function f can be 
bounded by some polynomial of N2. 



  

Not so obvious

 What might not be so obvious is that:

 f(n) <= (1/2)n2, for n >= 1 and therefore, 
n0 = 1, g(n) = n2, and c = 1/2. 

 This implies that f(n) is O(n2). 



  

Graphically
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