
Array ADT Ch 5
So far we have looked at Integer, String, Stack

ADTs.

ADT Array:

Elements: A component data type is defined and
all elements are of that type (homogeneous).

Structure: A linear index type is specified and a 1-
1 correspondence exists between the index type
and component type

Array ADT Continued

Domain: All possible index values with all
combinations of associated component values.

Operations:

1) Copy array element value (e.g value = a[i])
results: The ith component of a is copied
into value
requires: ?

Array ADT Continued

2) Update array element (e.g. a[i] = value)
results: The ith component of a is

 assigned value
requires: ?

3) Array copy (e.g. a = b)
results: All elements from b are copied
 into their respective positions in a

C Arrays

int a [100];

a[i] is a + (i * sizeof (int));

a is a constant pointer

Arrays and Pointers

int x, y;

int *array[2];

x = 1;

y = 2;

array[0] = & x;

array[1] = & y;

variable value memory address

x 1000

Multi-dimensional Arrays p 112

 Obviously, we can extend the array ADT to
include multidimensional arrays. The only real
change is the structure which becomes
something like:

component-type array[index1, index2]

component-type array[row, column]

Array Mapping Function (AMF)

 The only real challenge in implementing arrays
is how to map a multi-dimensional array into
linear space.

 Two- dimensional array AMF by rows:

– right most index varies the fastest

Consider: int a[10][5];

a[i][j] = base(a) + (i * 5 + j) * sizeof (int);
a is a constant pointer

More AMF

 What is the AMF for each of the following
assuming a row-major mapping?

1) double a[100];

2) float b[5][10][15];

Arrays and Pointers

int x;

int array[2][3];

x = 1;

array[0][1] = x;

array[1][2] = 9;

variable value memory address

x 1000

Iterator
Design Pattern

Used to traverse all elements in a container

keep track a current pointer in the container (state!)

first()

hasNext()

next()

last()

Generally used in Object
Oriented Languages but
can be applied to any
data structure.

C arrays do not provide
this interface.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10

