

Advanced Unix,
Basic C,

Program Compilation

Simple C Program Editing

● Create a directory called CS300 in your
Documents folder

● Change into the CS300 directory
● Open up a simple text editor called Geany in

the Integrated Environment

chadd@ralph:~/Documents/CS300> geany &

● The & causes the program to be launched in the
background so you can still use the command line.

Create the C program.
Differences from C++ ?

/* this is a comment */

#include <stdio.h>

int main ()
{
 printf ("hello world\n");
 return 0;
}

Save, Build, Execute
● Save your program in Documents/CS300 with

the name helloworld.c
● Change into the CS300 directory to see that the

file helloworld.c program exists

● Hit the Build button
● only works with no configuration for simple projects
● what shows up in the bottom window?

● Hit the Execute button

● List the contents of CS300 now

More UNIX Commands

Command / Symbol Meaning

tar czf file.tar.gz files... use the tar utility to compress file(s)

tar xzf file.tar.gz use the tar utility to decompress file(s)

./a.out > outputfile save the executable results in outputfile

./a.out >> outputfile append the execution results to the end
of outputfile

./a.out | less pipe the output of a.out to the input of
less (useful if the ouput results are more
than a screen in length)

Problems

● tar up the file helloworld.c
● Copy (not move) the tarred file to the parent

directory
● Change to the parent directory and untar the

file
● Compile the untarred file
● Run the executable
● Capture the execution results in a file called
rslts

● Type the command less rslts

C Topics
● include

<stdio.h>

<stdlib.h>

● printf/scanf

● comments

/* this is a comment */

#include <stdio.h>

int main ()
{
 int value;
scanf(“%d”, &value);

 printf ("hello world %d\n",
 value);

 return 0;
}

Build on the command line

gcc -Wall -o runMe helloworld.c -g

./runMe
● The ./ is necessary, why?

echo $PATH

gcc -Wall -c -o helloworld.o helloworld.c -g

gcc -Wall -o runMe helloworld.o -g

ls -altr

*Separate
Compilation

*Remember “Additional Dependencies” from CS250 Visual Studio
(Project Management -> Random.obj)

Makefiles
http://www.eng.hawaii.edu/Tutor/Make/index.html

● Description of how to build your executable
● useful if you have multiple source files
● GNU Make

make -h

Makefile

target: dependency1 dependency2
command1
command2

tab! Given a set of dependencies, make will only
run the necessary commands to build the
project. Build a dependency graph.

If a target is older than any of its dependencies
the commands are run to build the target

target and dependencies are files

Command line
make tree

● looks for target named tree in Makefile and
checks to see if it needs to be built

make
● looks for the first target in Makefile and checks

to see if it needs to be built

Makefile
● Download Makefile Example from web

● Let's look at the source code
● rational.h
● rational.c
● driver.c

cd Downloads
tar xzf MakefileExampleCS300.tar.gz
cd MakefileExampleCS300
ls

geany Makefile include/* src/* &

From the command line
● make
● make clean
● make driver
● make clean
● make tarball

C Topics
● #ifdef / #ifndef

● #define

● static

● array

● include ""

#ifndef _EXAMPLE_
#define _EXAMPLE_

#include “localHdr.h”

#define ARRAYSIZE 1024

static int value;
int bigArray[ARRAYSIZE];

#endif

POSIX

● Portable Operating System Interface for Unix
● standards for Unix

● API
● shells
● utilities

● Provides portability of applications, scripts, etc.

● cygwin provides POSIX support to Windows

man pages

● manual pages
● man bash
● man man
● man ls

also available online:
google → man bash
(may be different than what is on your machine)

man pages - Library Function
FOPEN(3)

Name
fopen, fdopen, freopen stream open functions

Synopsis
#include <stdio.h>
FILE *fopen(const char *path, const char *mode);

Description

(arguments or command line options are listed here)

Return Value

Errors

See Also

Referenced By

manual sections
● 0 Header files (usually found in /usr/include)

● 1 Executable programs or shell commands

● 2 System calls (functions provided by the kernel)

● 3 Library calls (functions within program libraries)

● 4 Special files (usually found in /dev)

● 5 File formats and conventions eg /etc/passwd

● 6 Games

● 7 Miscellaneous (including macro packages and
conventions), e.g. man(7), groff(7)

● 8 System administration commands (usually only for root)

● 9 Kernel routines [Non standard]
p means POSIX!

Geany & Makefiles
Build | Set Includes and Arguments

Build: make

● When you press Build the Makefile will be
invoked
● make sure the Makefile is currently being displayed!

make all

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19

