

Spam Filter

http://en.wikipedia.org/wiki/Bayesian_spam_filtering

http://en.wikipedia.org/wiki/Bayes%27_theorem

Spam Filter

● What is the probability that a message is spam?

● What is the probability that a message is spam,
given the set of words in that message?

Conditional Probability

What is the probability of A given B?

P(A∣B)=
P(A∩B)

P (B)

given

Unconditional Joint Probability

Bayes Theorem

only if P(B) != 0P(A∣B)=
P(B∣A)P(A)

P (B)

Link P(A|B) to P(B|A)
hopefully, one of those terms
is easy/possible to calculate.

P(Word | Spam) P(Spam | Word)

Which can we calculate?

Training/Learning

● If we have a collection of spam and ham
messages, we can calculate

● Which is convient, because we want to know:

P(Word | Spam)

P(Spam | Word)

Bayes Application

Rare = spam
Common = ham
Pattern = word

P(Rare∣Pattern)=

P(Pattern∣Rare)P(Rare)
P(Pattern∣Rare)P(Rare)+P(Pattern∣Common)P(Common)

Spam probability from a given word

P(S | W) is the probability that a message is a spam, knowing that the word "X" is in it;
P(S) is the overall probability that any given message is spam;
P(W | S) is the probability that the word "X" appears in spam messages;
P(H) is the overall probability that any given message is not spam (is "ham");
P(W | H) is the probability that the word "X" appears in ham messages

P (S∣W)=
P (W∣S)P (S)

P (W∣S)P (S)+P (W∣H)P(H)

Spam Prob from many words

p is the probability that the suspect message is spam;
p1 is the probability p(S | W1) that it is a spam knowing it contains a first word ("X");
p2 is the probability p(S | W2) that it is a spam knowing it contains a second word ("Y");
etc...

This assumes all words are independent
- not really true
- ok assumption in practice
- Naive Bayes Classifier

p gets very small
underflow!

p=
p1 p2 ... pn

p1 p2 ... pn+(1−p1)(1−p2)...(1−pn)

Practical Formula

ln(1
p
−1)=∑

i=1

N

[ln (1−pi)−ln pi]

1
p
−1=

(1−p1)(1−p2)...(1−pn)
p1 p2 ... pn

Practical Formula

p= 1
1+eη

η=∑
i=1

N

[ln(1−pi)−ln pi]
1
p
−1=eη

Implementation

percentSpam = # spam messages / (# spam messages + # ham messages)
percentHam = # ham messages / (# spam messages + # ham messages)

pS(w) = #spam messages word w occurs in / total number of spam messages
pH(w) = #ham messages word w occurs in / total number of ham messages

spamacity(w) = (pS(w) * percentSpam) / (pS(w) * percentSpam + pH(w) * percentHam)

for all words, w, in a message, m
sum += log(1-spamacity(w)) - log(spamacity(w))

spam rating of a message = 1/(1+e^sum)
assuming sum !=0

Technical Details

#include <math.h>

double log(double value); // ln

value

double log10(double value); // log 10
value

double exp(double value); // e ^ value

gcc -o spamClassifier ... bin/hashtable.o -lm

libm.so

Technical Details

#include <stdio.h>

int sprintf(char *str, const char *format, ...);

printf formatting printed to str rather than screen
or file.

char str[100];
int value = 1234;
sprintf(str, “%d”, value);

Technical Details
● Read many files from a directory:

#include <sys/types.h>
#include <dirent.h>

//http://www.metalshell.com/source_code/116/Read_Directory.html
DIR *pDir;
struct dirent *psDirEntry;
char fileName[100];

// open directory
if (NULL == (pDir = opendir (“data/spam”)))
{

perror ("opendir");
}
// read each entry from the directory
while (NULL != (psDirEntry = readdir (pDir)))
{

// skip any file name that starts with .
// skip . and ..
if (0 != memcmp (psDirEntry->d_name, ".", 1))
{

// read file, Do Work, etc
}

}
closedir (pDir);

Not part of C Standard,
part of POSIX standard

Available on many
Unix-like OSes

Hints

● if p
x
 is 0 or 1, you'll probably get bad results

● might fudge to 0.05 or 0.95

● Not all words appear in both spam and ham
messages

● Only count a word once per message!

● Design, Design, Design.
You probably need more
than two hash tables

Hints

● I will provide you the spam/ham/unknown files

● Install these files in the data directory in your
Eclipse Project

● Do NOT submit these files to Subversion
– To speed up a commit

● Right click individual files to commit.

odds & ends

● gcc will tell you what file a file depends on
● Just local dependencies

gcc -MM hashtable.c

● All dependencies

gcc -M hashtable.c

● http://mad-scientist.net/make/autodep.html

● valgrind -v --leak-check=yes –track-origins=yes ./driver

chadd@coffee:~/> gcc -MM src/hashtable.c
hashtable.o: src/hashtable.c \
 src/../include/hashtable.h \
 src/../include/../../CS300DynamicList/include/list.h

odds & ends

● Don't overflow your buffer during fscanf

Read at most 1023 characters and
then add a NULL

turn a string into an int:
#include <stdlib.h>

int x = atoi(“1234”);
 x = atoi(wordData);

char wordData[1024];

while (EOF != fscanf (pFile, "%1023s", wordData))

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18

