
Assignment #2

Topic(s): C, Makefiles, Writing modular code
Date assigned: Wednesday, September 7, 2011
Date due: Wednesday, September 14, 2011
Points: 15

The Greek astronomer Erathosthenes developed an algorithm for finding prime
numbers up to some limit N in the third century B.C. The algorithm goes like this:

1) Write down a list of integers from 2 to N
2) Take the first number on the list that is not circled or crossed out and circle it
because this number is prime
3) Cross out all remaining numbers that are a multiple of the number circled
4) Go to step 2 until done

Note: All circled numbers are prime

Example: Suppose the user typed in 10

2 3 X 5 X 7 X 9 X (circle 2 which I will show as bold and mark all multiples of 2 with an X)

2 3 X 5 X 7 X X X (circle 3 and mark all multiples of 3 with an X)

2 3 X 5 X 7 X X X (circle 5 and mark all multiples of 5 with an X)

2 3 X 5 X 7 X X X (circle 7 and mark all multiples of 7 with an X)

2 3 X 5 X 7 X X X (the algorithm is done since no numbers remain that are not crossed out
or circled)

Write a C program that implements the Sieve of Erathosthenes using an array.
The user is to enter a number, N, greater than or equal to 2 and less than or
equal to 1025 and your program is to store the values from 2 to N in an array.
Finally print out all of the prime numbers between 2 and N inclusive with five
values per line properly aligned in columns. That is, each number is to be right-
aligned in each column and each column is to take 5 places. Properly label your
output. Make the array of size 1024.

In order to successfully complete this assignment, you need to write a complete
modular program in Eclipse using the make facility. Here is the boiler-plate that
you must use for the assignment.

Step#1: Create a project (empty C project with no auto make) called
cs300_2_PUNetID so for me that would be cs300_2_will4614

Step#2: Inside the project create the folders bin, src, and include.
Remember, C is case-sensitive.

Step#3: Inside the include folder create a file called sieve.h with
the following code.

#ifndef SIEVE_H_
#define SIEVE_H_

#define MAX_PRIMES 1024

void sieveLoad (int [], int);
void sieveCalculate (int [], int);
void sievePrint (int [], int);

#endif /* SIEVE_H_ */

Step#4: Inside the src folder create a file called sieve.c with the
following code.

#include <stdio.h>
#include "../include/sieve.h"

/* Your function logic from sieve.h will go here */

Step#5: Inside the src folder create a file called sievedriver.c with
the following code.

#include <stdio.h>
#include "../include/sieve.h"

int main (void)
{

 int sieve [MAX_PRIMES];

 /* Your program logic will go here */

 return 0;
}

Step #6: Create a Makefile as follows, filling in the relevant bits
marked “YOU DECIDE!”:

Step #7: Before writing any logic, build your project and make sure
your project builds without errors.

Step #8: Write your program one function at a time testing each
function for correctness.

You can add functions above as needed.

Don't forget to add comments and test your code thoroughly!

Be sure that sieve.c does not contain code that will crash if given bad data!

To submit your code, use the submit function on Zeus to submit
cs300_2_PUNetID.tar.gz and turn in a color hard copy by 9:15am on the day
the assignment is due.

Remember, you can only submit your project once

CC=gcc
CFLAGS=-g -Wall

.PHONY: all clean tarball

all: sievedriver

sievedriver: bin/sievedriver.o bin/sieve.o
YOU DECIDE!

bin/sievedriver.o: YOU DECIDE!
${CC} ${CFLAGS} -o bin/sievedriver.o -c src/sievedriver.c

bin/sieve.o: YOU DECIDE!
YOU DECIDE!

clean:
rm sievedriver bin/*.o

tarball: clean
tar czf ../cs300_2_PUNetID.tar.gz ../cs300_2_PUNetID

