Logical Operators and if/else statement

If Statement

- We may want to execute some code if an expression is true, and execute some other code when the expression is false.
- This can be done with two if statements...
if (value >= LIMIT)
\{
// do something
\}
if (value < LIMIT)
\{
// do something else
\}

If/Else (4.3)

- C++ provides a shortcut to combine two if statements:
- The
statements in
if (expression) the else

// do stuff

 clause are \} executed only else when the expression is // do other stuff false.\}

Example

int number;
cout << "Enter a number, I'll tell you";
cout << " if it is odd or even: "; cin \gg number;
// use an if/else statement here

if/else/if statements (4.4)

-What if there are more than two alternatives?

```
cout << "Enter two numbers: ";
```

cin \gg num1 >> num2;
if(num1 > num2)
\{
cout << num1 << "is greater" << endl;
\}
else if(num2 > num1)
\{
cout << num2 << "is greater" << endl;
\}
else
\{
cout << "Numbers are equal" << endl;
\}

Logical Operators (4.7)

- There are three logical operators
\&\&
And
Or
!
Not

Evaluating Expressions: And \&\&

- expr1 \&\& expr2
- For the complete expression to be true, both expr1 and expr2 have to be true
- Example:
temp > HOT \&\& humidity > STICKY
- These are unbearable heat and humidity conditions
- Both must be true for the entire expression to be true

Evaluating Expressions: Or ||

- expr1 || expr2
- The complete expression is true if either expr1 or expr2 is true
- Examples:
salary < MIN_SALARY || MARRIED == status
- To qualify for financial aid, salary has to be less than some minimum salary or you must be married
- Only one condition has to be true

Evaluating Expressions: Not!

- !expr
- Unary operator: Negation
- Examples:
! (salary < MIN_SALARY)
- What makes this true? False?

Precedence

Precedence Operators (Highest to Lowest)

- (negation) ! (Logical NOT)
* / \%
- +

<= =\gg <
== ! $=$
\& \&
11
= += -= *= /= \%

Expression Evaluation

- According to the operator precedence and associativity rules given on the previous slide, how will the following expressions be evaluated?

```
x < min + max
min <= x && x <= max
    !x == y + 2
    x = a + b % 7*2
```


Practice

- Are these two code snippets equivalent?
int x, y;
if($x>y$)
\{

$\mathrm{x}+=\mathrm{y}$;

\}
if $(\mathrm{y}<\mathrm{x})$
\{
$\mathrm{y}+=\mathrm{x}$;
\}

```
int x, y;
if(x > y)
{
    x += y;
}
else
{
    y += x;
}
```


Problem

- Write a C++ program segment that allows the user the ability to input an integer from the keyboard.
- If the integer is positive, increment a variable posCount by 1 . If the integer is negative, increment a variable negCount by 1 . If neither, increment zeroCount by 1
int posCount=0, negCount=0, zeroCount=0;

Problem

- Write a program that displays a letter grade corresponding to an exam score

$$
\begin{aligned}
& 90-100 \mathrm{~A} \\
& 80-89 \mathrm{~B}
\end{aligned}
$$

double examGrade;
cin >> examGrade;
70-79 C
60-69 D
0-59 F

Nested if Statements (4.6)

- Note the indentation of the inner if
if (actual $>$ expected)
\{

Example

- Write nested if statements that set the correct value in the wage variable:

If your status is full time, and you worked more than 10 years, your wage is $\$ 25$. All other full time workers have a wage of $\$ 15$. If your status is part time, you have a wage of $\$ 10$.
const int FULLTIME=0, PARTTIME=1; double wage;
int yearsWorked, status;

Example

- Your local bookstore has asked you to write a program to help them determine the cost of shipping of customers orders. If the order is $\$ 30$ or less then shipping will cost $\$ 5$, if the order is over $\$ 30$ then shipping will be $\$ 3$

Problem

- The bookstore has now changed its shipping policy so that
- If the order is $\$ 30$ or less, shipping is $\$ 5$
- If the order is over $\$ 30$ but less than $\$ 50$, shipping is \$3
- If the order is over $\$ 50$ then shipping is $\$ 2$

Practice

- Write these with nested ifs and without nested ifs

- An Isosceles triangle has two sides of equal length
- A Golden Isosceles triangle is a triangle where the ratio of the long side to the short side is the Golden Ratio, $1 / 2$ * $(1+\sqrt{ } 5)$ or approximately $1.6180339887 \ldots$.
- An Equilateral triangle has all sides of equal length
- Write code to ask for three sides of a triangle and determine if the triangle is Isosceles, Golden Isosceles, Equilateral, or neither.
- If the triangle is Isosceles or neither, determine if it is also a right triangle.

Practice

- Write these with nested ifs and without nested ifs
- Determine if a number entered by a user is even or odd
- For odd numbers, determine if the number is a multiple of 3,5 , or neither.
- For even numbers, determine if the number is a multiple of 4,10 , or neither.

Practice

- Write these with nested ifs and without nested ifs
- Determine if a decimal number entered by a user is even or odd in the hundredths place
- 1.23342341
- If it is odd, determine if the thousandths place is a multiple of the hundredths place
- If it is even, determine if the hundredths place is a multiple of the thousandths place

