Arithmetic Operators

Section 2.15 & 3.2 p 60-63, 81-89

Today

- Arithmetic Operators & Expressions
 - Computation
 - Precedence
 - Algebra vs C++
 - Exponents

Assigning **floats** to **ints**

int intVariable;

```
intVariable = 42.7;
```

cout << intVariable;</pre>

• What do you think is the output?

Assigning doubless to ints

• What is the output here?

```
int intVariable;
```

```
double doubleVariable = 78.9;
```

- intVariable = doubleVariable;
- cout << intVariable;</pre>

Integer Division

• What is the output?

```
o int grade;
grade = 100 / 20;
cout << grade;</pre>
```

```
o int grade;
grade = 100 / 30;
cout << grade;</pre>
```

Division

• grade = 100 / 40;

- Check operands of /
 - the data type of grade is not considered, why?
- We say the integer is *truncated*.

• grade = 100.0 / 40;

• What data type should grade be declared as?

Mathematical Expressions

- Complex mathematical expressions are created by using multiple operators and grouping symbols
 - expression: programming statement that has value

$$\circ$$
 sum = $21 + 3;$
expression

In these two examples, we assign the value of an *expression* to a variable

 \circ number = 3;

Arithmetic Operators

- Operators allow us to manipulate data
 - Unary: operator operand
 - Binary: operand operator operand (left hand side) (right hand side)

Operator	Meaning	Туре	Example
-	Negation	Unary	- 5
=	Assignment	Binary	rate = 0.05
*	Multiplication	Binary	cost * rate
/	Division	Binary	cost / 2
%	Modulus	Binary	cost % 2
+	Addition	Binary	cost + tax
-	Subtraction	Binary	total - tax

Operator Precedence

- result = 4 * 2 3;
- result = 12 + 6 / 3;
 - \circ result = ?
- Rules on how to evaluate an arithmetic expression
 - arithmetic expressions are evaluated left to right
 - do them in order of precedence
 - grouping symbols ()

Operator Precedence

Precedence of Arithmetic Operators			
(Highest to Lowest)			
(unary negation) -			
*	/	%	
+	-		
(assignment) =			

If two operators have the same precedence, evaluate them from left to right as they appear in the expression

Practice

int x = 3;If you are unsure, double y = 2.5;you can always type up and run the code in cout << 5 + 2 * 3;Visual Studio cout << (10 / 2 - y); cout << 3 + 12 * 2 - 3;cout << 4 + 17 / 3.0 + 9;cout << (6 - y) * 9 / x * 4 - 9;

Modulus

- Modulus is the remainder after integer division
- grade = 100 % 20;

o grade = ?

- grade = 100 % 30;
 - o grade = ?
- rem = x % n;

• What are the possible values for **rem**?

Summary

- Today we have looked at:
 - Arithmetic Operators & Expressions
- Next time we will:
 - Continue looking at mathematic operators
- Completed section 2.15 & started on section 3.2