Arithmetic Operators

Section 2.15 \& 3.2
p 60-63, 81-89

Today

- Arithmetic Operators \& Expressions
- Computation
- Precedence
- Algebra vs C++
- Exponents

Assigning floats to ints

int intVariable;
intVariable = 42.7;
cout << intVariable;

- What do you think is the output?

Assigning doubless to ints

- What is the output here?
int intVariable;
double doubleVariable $=78.9$;
intVariable = doubleVariable;
cout << intVariable;

Integer Division

- What is the output?
- int grade; grade = 100 / 20; cout << grade;
- int grade; grade = 100 / 30; cout << grade;

Division

- grade $=100 / 40$;
- Check operands of /
" the data type of grade is not considered, why?
- We say the integer is truncated.
- grade $=100.0 / 40$;
- What data type should grade be declared as?

Mathematical Expressions

- Complex mathematical expressions are created by using multiple operators and grouping symbols
- expression: programming statement that has value
- sum $=21+3$;
expression

number $=3$;

In these two examples, we assign the value of an expression to a variable

Arithmetic Operators

- Operators allow us to manipulate data
- Unary: operator operand
o Binary: operand operator operand (left hand side)
(right hand side)

Operator	Meaning	Type	Example
-	Negation	Unary	5
=	Assignment	Binary	rate $=0.05$
*	Multiplication	Binary	cost * rate
/	Division	Binary	cost / 2
\%	Modulus	Binary	cost \% 2
+	Addition	Binary	cost + tax
-	Subtraction	Binary	total - tax

Operator Precedence

- result $=4$ * $2-3$;
- result $=12+6 / 3$;
- result = ?
- Rules on how to evaluate an arithmetic expression
- arithmetic expressions are evaluated left to right
- do them in order of precedence
o grouping symbols ()

Operator Precedence

Precedence of Arithmetic Operators

(Highest to Lowest)
(unary negation) -

* / \%
$+$
(assignment) $=$

If two operators have the same precedence, evaluate them from left to right as they appear in the expression

Practice

int $x=3$;
double $y=2.5 ;$
cout $\ll 5+2$ * 3 ;
cout $\ll(10 / 2-y) ;$
cout $\ll 3+12 * 2-3$;
cout $\ll 4+17 / 3.0+9$;
cout $\ll(6-y) * 9 / x * 4-9$;

Modulus

- Modulus is the remainder after integer division
- grade = 100 \% 20;
${ }^{\circ}$ grade $=$?
- grade = 100 \% 30;
${ }^{\circ}$ grade $=$?
- rem $=\mathbf{x}$ \% n ;
- What are the possible values for rem?

Summary

- Today we have looked at:
- Arithmetic Operators \& Expressions
- Next time we will:
- Continue looking at mathematic operators
- Completed section 2.15 \& started on section 3.2

