Arithmetic Operators

Today

- Arithmetic Operators & Expressions
 - o sections 2.15 & 3.2
 - Computation
 - Precedence
 - Algebra vs C++
 - Exponents

Assigning floats to ints

Look at the following situation.

```
int intVariable;
intVariable = 42.7;
cout << intVariable;</pre>
```

What do you think is the output?

Assigning floats to ints

What is the output here?

```
int intVariable;
double doubleVariable 78.9;
intVariable = doubleVariable;
cout << intVariable;</pre>
```

Arithmetic Operators

- Operators allow us to manipulate data
 - o Unary: operator operand
 - o Binary: operand operator operand (left hand side) (right hand side)

Operator	Meaning	Type	Example
-	Negation	Unary	- 5
=	Assignment	Binary	rate = 0.05
*	Multiplication	Binary	cost * rate
/	Division	Binary	cost / 2
%	Modulus	Binary	cost % 2
+	Addition	Binary	cost + tax
-	Subtraction	Binary	total - tax

Integer Division

What is the output?

```
o int grade;
grade = 100 / 20;
cout << grade;</pre>
```

```
o int grade;
grade = 100 / 30;
cout << grade;</pre>
```

Division

- grade = 100 / 40; grade is 2
 - If both operands of the division operator are integers, then integer division is performed.
 - the data type of grade is not considered, why?
 - We say the integer is truncated. Everything after the decimal point is dropped. No rounding.
- grade = 100.0 / 40;
 - o grade is 2.5
 - What data type should grade be declared as?

Modulus

- Modulus is the remainder after integer division
- grade = 100 % 20;
 - o grade = ?
- grade = 100 % 30;
 - o grade = ?
- rem = x % n;
 - What are the possible values for rem?

Practice

Q.1. What value is assigned to x?

- a. x = 8 + 3;
- b. x = 8 3;
- c. x = 8 * 3;
- d. x = 8 % 3;
- e. x = 8 / 3;

Mathematical Expressions

- Complex mathematical expressions are created by using multiple operators and grouping symbols
 - expression: programming statement that has value

In these two examples, we assign the value of an *expression* to a variable

Examples

```
• result = x;
• result = 4 + result;
• result = 15 / 3;
• result = 22 * number;
• result = a + b % c;
• result = a + b + d / c - q + 42;
cout << "The value: " << (sum / 2) << endl;</li>
```

Operator Precedence

- result = a + b + d;
 result = 12 + 6 / 3;
 result = ?
- Rules on how to evaluate an arithmetic expression
 - arithmetic expressions are evaluated left to right
 - when there are two operators, do them in order of precedence

Operator Precedence

If two operators have the same precedence, evaluate them from left to right as they appear in the expression

Q.2. Practice

- a. 5 + 2 * 3
- b. 10 / 2 -1
- c. 3 + 12 * 2 3
- d. 4 + 17 % 3 + 9
- e. 6-2*9/3*4-9

Summary

- Today we have looked at:
 - Arithmetic Operators & Expressions
- Next time we will:
 - Continue looking at mathematic operators
- Completed section 2.15 & started on section 3.2