

Hypothesis Testing I

Spring 2013

Hypothesis Testing

- Hypothesis testing is a decision making process for evaluating claims about a population.
- The researcher must:
 - Define the population under study
 - State the hypothesis that is under investigation
 - Give the significance level
 - Select a sample from the population
 - Collect the data
 - Perform the statistical test
 - Reach a conclusion

Population and Samples

Give at least three examples of a population 1. 2. 3.

For the population listed in 1., give an example of a sample from the population

Can you make up some hypothesis about the population in 1.

Hypothesis Tests

- Examples of hypothesis tests include t-test, Chi-Square, and correlation analysis to name a few
- To use this tool properly, you must have a statistics background
- Applying an incorrect test to a given set of data will give incorrect results

Hypothesis Testing

- Hypothesis testing is the formal statistical technique of collecting data to answer questions through the use of a statistical model.
- "In statistics, a result is called statistically significant if it is unlikely to have occurred by chance alone, according to a pre-determined threshold probability, the significance level."

http://en.wikipedia.org/wiki/Statistical_hypothesis_testing

NULL Hypothesis

The Normal Distribution

- The following Hypothesis Tests assume that the data is normally distributed.
- The standard normal curve in the picture has a mean of 0 and standard deviation of 1. A dataset with a normal distribution has about 68% of the observations within σ of the mean μ which in this case is (-1,1)

http://www.stat.yale.edu/Courses/1997-98/101/normal.htm

The Normal Distribution Continued

- About 95% of the observations will fall within 2 standard deviations of the mean (-2,2)
- About 99.7% of the observations will fall within 3 standard deviations of the mean
- Example: Consider 130 observations of body temperature with the results below. If the data is normal, what must be the case?

Variable	N	Mean	Median	StDev	Min	Max
BODY TEMP	130	98.249	98.300	0.733	96.300	100.800

One-Sample T-Test

- This is the easiest of the statistical tests to understand
- Compare observed vs hypothesized mean
 - Observed: measured
 - Hypothesized: we choose this value to be meaningful
- T Test determines the likelihood that the difference between the means occurs by chance
- The chance is reported as the p-value

p-value

- p-value: the probability that the difference occurs due to chance
 - A small p-value means that the difference is unlikely to be the result of chance
 - A large p-value means the difference is likely to be the result of chance
- What do we mean by random chance? Keep this question in mind and we will come back and give an answer.

Statistically Significant Difference

- The lower the p-value, the more certain that we can be that there is a statistically significant difference
- Most disciplines look for a p-value of 0.05 or less
 - if p < 0.05, reject the null hypothesis
 - if $p \ge 0.05$, accept the null hypothesis

Problem 11.1

The file LipidData in the CS130 Public directory represents a blood lipid screening of medical students.

- 1. Grab this Excel file, open it up in SPSS and save the file as lipiddata.sav.
- 2. What is the mean Cholesterol value?
- 3. Is the cholesterol level significantly greater than 190? Can you tell by looking at the data? What do you think?

Problem 11.1 Continued

 Our first objective is to perform a one-sample ttest on data from blood lipid screening of medical students. Specifically, we will test whether the mean cholesterol level is greater than 190 in a statistically significant way, the point at which cholesterol levels may be unhealthy.

What is the NULL Hypothesis?

Problem 11.1 Continued

- 1. Open Lipid Data.
- 2. From the Analyse menu, select Compare Means and then One Sample t-test .
- 3. Select your Test Variable which is Cholesterol .
- 4. Enter the Test Value which is 190.
- 5. In the variable browser, select Cholesterol and click ADD

Problem 11.1 Results

 The p-value is given in the box labeled Sig. (2tailed) which stands for significance level

	Test Value = 190								
				Mean	95% Confidence Interval of the Difference				
	t	df	Sig. (2-tailed)	Difference	Lower	Upper			
Cholesterol	.336	94	.737	1.23158	-6.0356	8.4988			

One-Sample Test

Problem 11.1 Results

- 1. The mean is slightly higher than 190; however, this difference is well within the range of sampling variance.
- A significance level of .737 indicates you would see a difference of this magnitude by chance more than 73% of the time
- 1. Thus the cholesterol level is not significantly greater than 190

Paired T-Test

- The most common use of the paired t-test is the comparison of two measurements (typically one measurement occurs "before" a treatment and the other "after" a treatment from the <u>same</u> individual or group.
- This test can determine if the treatment had a statistically significant effect.
- The p-value is the primary statistic of concern and the interpretation of the p-value is the same as for the one-sample t-test

Problem 11.2

- Using the LipidData
 - 1. What is the mean for Triglycerides?
 - 2. What is the mean for Trig-3yrs?
 - 3. Does it look like there is a statistically significant difference between Triglycerides and Trig-3yrs?

Problem 11.2 Continued

- Perform the paired t-test using the LipidData file
- State the Null Hypothesis
- From Analyze menu, select Compare Means and then Paired Samples t-test
- Should we accept the Null Hypothesis? Why?
- State your conclusion