

# Hypothesis Testing I

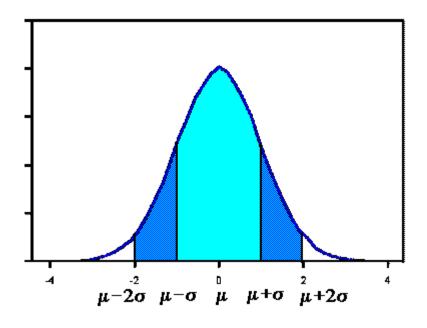
Spring 2011

# Hypothesis Testing: Can we show a difference?

- Hypothesis testing is a decision making process for evaluating claims about a population.
- The researcher must:
  - Define the population under study
  - State the hypothesis that is under investigation
  - Give the significance level
  - Select a sample from the population
  - Collect the data
  - Perform the statistical test
  - Reach a conclusion

### Hypothesis Tests

- Examples of hypothesis tests include t-test, Chi-Square, and correlation analysis to name a few
- CS130: give you enough information to use PASW to perform some different hypothesis tests
- You must have a statistics background
- Possible to apply wrong test to data
  - Invalid results


# Hypothesis Testing

- Hypothesis testing is the formal statistical technique of analysing data to answer questions through the use of a statistical model.
- "In statistics, a result is called statistically significant if it is unlikely to have occurred by chance alone, according to a pre-determined threshold probability, the significance level."

http://en.wikipedia.org/wiki/Statistical\_hypothesis\_testing

#### The Normal Distribution

- The following Hypothesis Tests assume that the data is normally distributed.
- The standard normal curve in the picture has a mean of 0 and standard deviation of 1. A dataset with a normal distribution has about 68% of the observations within  $\sigma$  of the mean  $\mu$  which in this case is (-1,1)



http://www.stat.yale.edu/Courses/1997-98/101/normal.htm

#### The Normal Distribution Continued

- About 95% of the observations will fall within 2 standard deviations of the mean (-2,2)
- About 99.7% of the observations will fall within 3 standard deviations of the mean
- Example: Consider 130 observations of body temperature with the results below. If the data is normal, what must be the case?

| Variable  | N   | Mean   | Median | StDev | Min    | Max     |
|-----------|-----|--------|--------|-------|--------|---------|
| BODY TEMP | 130 | 98.249 | 98.300 | 0.733 | 96.300 | 100.800 |

### One-Sample T-Test

- This is the easiest of the statistical tests to understand
- Specifically, this test compares an observed mean (computed from a set of observed values) to a hypothesized mean and determines the likelihood that the difference between the means occurs by chance
- The chance is reported as the p-value

### p-value

- The p-value measures the probability that the difference we see between the hypothesized mean and sample mean occurs due to chance
  - A small p-value means that the difference is unlikely to be the result of chance
  - A large p-value means the difference is likely to be the result of chance
- What do we mean by random chance? Keep this question in mind and we will come back and give an answer.

# Statistically Significant Difference

- The lower the p-value, the more certain that we can be that there is a statistically significant difference between the observed and hypothesized mean
- Most disciplines look for a p-value of less than 0.05
- If the p-value < 0.05 then the difference is regarded as statistically significant.

```
if p < 0.05, reject the null hypothesis if p>= 0.05, accept the null hypothesis
```

#### Problem 11.1

The file LipidData in the CS130 Public directory represents a blood lipid screening of medical students.

- 1. Grab this Excel file, open it up in PASW and save the file as lipiddata.sav.
- 2. What is the mean Cholesterol value?
- 3. Is the cholesterol level significantly different than 190? Can you tell by looking at the data? What do you think?

#### Problem 11.1 Continued

- One-sample t-test
- Test whether the mean cholesterol level is different than 190 in a statistically significant way
  - 190 is the point at which cholesterol levels may be unhealthy.

What is the NULL Hypothesis?

#### Problem 11.1 Continued

- 1. Open Lipid Data.
- 2. From the Analyze menu, select Compare Means and then One Sample t-test.
- 3. Select your Test Variable which is Cholesterol.
- 4. Enter the Test Value which is 190.
- 5. In the variable browser, select Cholesterol and click ADD

#### Problem 11.1 Results

 The p-value is given in the box labeled Sig. (2tailed) which stands for significance level

One-Sample Test

|             | Test Value = 190 |    |                 |                    |                                                 |        |  |  |
|-------------|------------------|----|-----------------|--------------------|-------------------------------------------------|--------|--|--|
|             |                  |    |                 |                    | 95% Confidence<br>Interval of the<br>Difference |        |  |  |
|             | t                | df | Sig. (2-tailed) | Mean<br>Difference | Lower                                           | Upper  |  |  |
| Cholesterol | .336             | 94 | .737            | 1.23158            | -6.0356                                         | 8.4988 |  |  |

#### Problem 11.1 Results

- 1. The mean is slightly higher than 190; however, this difference is well within the range of sampling variance.
- A significance level of .737 indicates you would see a difference of this magnitude by chance more than 73% of the time
- 1. Thus the cholesterol level is not significantly different than 190

#### Paired T-Test

- Comparison of two measurements
  - From the same individual
  - Before and after a treatment (experiment)
- This test can determine if the treatment had a statistically significant effect.
- The p-value is the primary statistic of concern and the interpretation of the p-value is the same as for the one-sample t-test

#### Problem 11.2

- Using the LipidData
  - 1. What is the mean for Triglycerides?
  - 2. What is the mean for Trig-3yrs?
  - 3. Does it look like there is a statistically significant difference between Triglycerides and Trig-3yrs?

#### Problem 11.2 Continued

- Perform the paired t-test using the LipidData file
- State the Null Hypothesis
- From Analyze menu, select Compare Means and then Paired Samples t-test
- Should we accept the Null Hypothesis? Why?
- State your conclusion