Intermediate Excel

Spring 2011

Combination Cell References

- How do \$A1 and $A \$ 1$ differ from $\$ \mathrm{~A} \$ 1$?

	\mathbf{A}	\mathbf{B}	\mathbf{C}	\mathbf{D}	\mathbf{E}
1	4	8	$=A 1 / \$ A \$ 3$		
2	6	4	$=A \$ 1^{*} \$ B 4+B 2$		
3	$=A 1+A 2$	1			
4					
5					

- What formula would result in cell D1 if you copy the formula from cell C1 to D1?
- What formula would result in cell E5 if you copy the formula from C2 to E5?

Problem 4.1

	A	B	C	D	E
1	Item \#	Product	Price	After Discount A	After Discount B
2	125 A	Scooter	$\$ 59.99$		
3	789 A	Tricycle	$\$ 129.95$		
4	78 B	Ball	$\$ 12.35$		
5	489 A	Doll	$\$ 21.99$		
6	57 B	Art Kit	$\$ 14.95$		
7					
8	Discounts				
9	A	B			
10	10%	20%			

For the above worksheet, write a formula in the highlighted cell in such a way that you can fill down and then across to calculate the other prices. Use Named Cells where appropriate.

Debug Your Worksheet

- Select cell D2 and use "Trace Precedents" in the Formulas Tab to see which cells are used by cell D2.

Formula Auditing

- Select cell B10 and use "Trace Dependents" to see which cells use B10.
- Click "Remove Arrows" to remove the tracing lines at any given time.

More Excel Functions

- In general, Excel functions take the form: name(arg1, arg2,...) where the number of arguments depends on the function being used.

Find a function in the Math \& Trig library that uses two arguments. Show how the function works.

Range of Cell Values

- The : between cell references indicates a range of values inclusive. So, A1:A5 means include cells A1, A2, A3, A4, A5.

Any ideas how we might rewrite the formula
$=A 1+A 2+A 3+A 4+A 5$

- Excel is not case-sensitive. What does this mean?

Variety of Functions

- Excel has over 350 built-in functions divided into related categories.
- To invoke the "Paste Function" dialog box, click on the f_{x} icon on the tool bar.

Insert Function Search for a function:

Type a brief description of what you want to do and then click

8	x

| Or select a çategory: | Math \& Trig |
| :--- | :--- | :--- |
| | Most Recently Use |
| Select a function: | All |

Select a function: All

Financial Built-in Functions

- The financial functions can be isolated in Excel. Simply go to the Function Library on the Formulas tab and select Financial.
- PMT Function

PMT Function

- The PMT function calculates the payment for a loan based on constant payments and a constant interest rate
- Syntax is PMT(rate,nper,pv,fv,type) where
- rate is the interest rate for the loan
- nper is the total number of payments for the loan
- pv is the present value, or the total amount that a series of future payments is worth now; also known as the principal
- fv is the future value, or a cash balance you want to attain after the last payment is made. If fv is omitted, it is assumed to be 0 (zero), that is, the future value of a loan is 0
- type is the number 0 (zero) or 1 and indicates when payments are due ($0=$ end of month $=$ default while $1=$ beginning of month)

PMT Function Continued

- Remarks
- The payment returned by PMT includes principal and interest.
- Make sure that you are consistent about the units you use for specifying rate and nper. If you make monthly payments on a four-year loan at an annual interest rate of 12 percent, use $12 \% / 12$ for rate and $4 * 12$ for nper. If you make annual payments on the same loan, use 12% for rate and 4 for nper.

PMT Function Continued

- Examples
- The following formula returns the monthly payment on a $\$ 10,000$ loan at an annual rate of 8 percent that you must pay off in 10 months:
$>=$ PMT $(8 \% / 12,10,10000)$ equals $-\$ 1,037.03$
$>$ Why is this negative?
- For the same loan, if payments are due at the beginning of the period, the payment is:
$>=$ PMT $(8 \% / 12,10,10000,0,1)$ equals $-\$ 1,030.16$
$>$ Why?

PMT Function Continued

- The following formula returns the amount someone must pay to you each month if you loan that person $\$ 5,000$ at 12 percent and want to be paid back in five months:
$>=$ PMT $(12 \% / 12,5,-5000)$ equals $\$ 1,030.20$
$>$ Let's break down each argument to understand this
- You can use PMT to determine payments to annuities other than loans. For example, if you want to save $\$ 50,000$ in 18 years by saving a constant amount each month, you can use PMT to determine how much you must save. If you assume you'll be able to earn 6 percent interest on your savings per year, you can use PMT to determine how much to save each month.
$>=\operatorname{PMT}(6 \% / 12,18 * 12,0,50000)$ equals $-\$ 129.08$
> If you pay $\$ 129.08$ into a 6 percent savings account every month for 18 years, you will have \$50,000.

Problem 4.2

Imagine that you want to purchase a car worth $\$ 29,899$. The car dealer is ready to grant you a 5 -year loan at 6.5% annual interest rate, but you must put down 10\% of the car price as down payment.

Design an Excel spreadsheet to allow the user the ability to input:
(a)The price of the car, (b)The yearly interest rate, (c)The period of the loan in years

Your spreadsheet should then compute and display: (d)The amount of the down payment, (e) The amount of the loan , (f) The monthly payment of the loan

Be sure to Name each of the input cells appropriately.

Problem 4.2 Continued

$\mathbf{4}$	A	B	C
$\mathbf{1}$	Car Loan		
2			
3	Enter Car Price		
4	Enter Yearly Interest Rate		
5	Enter Time in Years		
6			
7	Down Payment Is		
8	Loan Amount Is		
9	Monthly Payment Is		
9			

Once you get the above worksheet working, add a row that shows the total interest paid.

Problem 4.2 Continued

Add a payment schedule to your current worksheet with columns: Payment \#, Starting Balance, Monthly Payment, Monthly Interest, and Ending Balance.

Payment \#	Starting Balance	Monthly Payment	Interest	Ending Balance
1	$\$ 26,909.10$	$\$ 526.51$	$\$ 145.76$	$\$ 26,528.35$
2	$\$ 26,528.35$	$\$ 526.51$	$\$ 143.70$	$\$ 26,145.54$
3	$\$ 26,145.54$	$\$ 526.51$	$\$ 141.62$	$\$ 25,760.65$
4	$\$ 25,760.65$	$\$ 526.51$	$\$ 139.54$	$\$ 25,373.68$
\ldots	\ldots.	\ldots	\ldots.	

Problem 4.2 Continued

How can you be sure that your payment schedule is correct?

Change the interest rate to 6\%. Does your worksheet update correctly?

What-If Analysis \& Goal Seeking

- Using Excel to scrutinize the impact of changing values in cells that are referenced by a formula in another cell is called what-if analysis.

Goal Seek Question

How much car can I afford if I am willing to pay $\$ 600$ a month under the initial scenario?

Problem 4.3 Goal Seek

www.happyplanetindex.org
The HPI is calculated as follows:

$$
\text { HPI }=\frac{\text { Happy Life Years }}{\text { Ecological Footprint }+\alpha} * \beta
$$

Happy Life Years $=\frac{\text { Life Satisfaction } * \text { Life Expectancy }}{10}$

Life Satisfaction: 2005 Gallup World Pool and the World Values Survey
Ecological footprint: "the amount of land required to provide for all their resource requirements plus the amount of vegetated land required to sequester (absorb) all their CO2 emissions".

Goal Seek

- What Life Expectancy do we need to the US to have an HPI of 89?
- What Ecological Footprint do we need in the US to have an HPI of 89 ?

-	A	B	C	D	E	F	G	H	1	」	K	L
1		Happy Planet Index			Happy Life Years			Ecological Footprint			alpha	beta
2		30.9877			61.541			9.4			3.35	6.42
3								Life Satisf			Life Expect	tancy
4								7.9			77.9	
5												

- Conditional Formatting

Let's import some big data

Flight Data Link on the online schedule
http://www.transtats.bts.gov/DL SelectFields.asp?T able ID=236\&DB Short Name=On-Time
Pre-zipped File
Download
Open .zip file then Drag Excel workbook to desktop This make take a few minutes....

Keep the top row on the screen

Let's do some analysis

- Average Delay time? (ArrDelayMinutes)
- Number of cancellations? (Cancelled)
- Number of diverted flights? (Diverted)
- Maximum distance? (Distance)
- Minimum distance?
- Find the average distance of cancelled flights! averageif()

Data Tab!

