
24. RISC Pipelining

Chapter 15 
sections 15.5

Spring 2016 CS430 - Computer Architecture 1



MIPS Instruction Set 

• The MIPS instruction set was designed for 
pipeline execution

• MIPS instructions are the same length. x86 instructions 
vary from 1 byte to 17 bytes and pipelining is much 
more challenging.

• MIPS has only a few instruction formats, with the 
source operand being located in the same place in each 
instruction.

• Memory operands only appear in loads or stores in 
MIPS. 

• Operands must be aligned in memory.

Spring 2016 CS430 - Computer Architecture 2



MIPS Instructions

• MIPS instructions classically take five steps:

• Instruction Fetch (IF)

• Instruction Decode & Register Fetch (ID)

• Execution / Effective Address (EX)

• Memory Access (MEM)

• Write Back Results (WO)

Spring 2016 CS430 - Computer Architecture 3



Non-pipelined RISC Processor (MIPS)
5 stages

Spring 2016 CS430 - Computer Architecture 4



Instruction Fetch (IF)

• IF (Instruction Fetch)
IR <- M[PC] 
NPC <- PC + 4

• IR: Instruction Register

• M: Memory

• PC: Program Counter

• NPC: Next Program Counter

• Fetch the instruction

• Update program counter

Spring 2016 CS430 - Computer Architecture 5



Instruction Decode (ID)

• ID (Instruction Decode/Register Fetch) 

• A <- Regs[rs] 

• B <- Regs[rt]

• Imm<- sign-extend immediate field of IR

• Decoding can be done in parallel with reading 
registers 

• In an aggressive implementation the branch can 
be completed at the end of this stage as we will 
see later

Spring 2016 CS430 - Computer Architecture 6



Execution (EX)

• Performs one of the following:

• Memory Reference
• ALUOutput <- A + immediate

• Register-Register ALU instruction
• ALUOutput<- A opcode B

• Register-Immediate ALU instruction
• ALUOutput<- A opcode Imm

• Branch
• ALUOutput<- NPC + (Imm << 2)

• Cond <- (A==0)

Spring 2016 CS430 - Computer Architecture 7



Memory Access (MEM)

• Memory Reference

• LMD <- Mem[ALUOutput] ; load from memory

• Mem[ALUOutput] <- B ; store to memory

• Branch

• if (cond) PC <- ALUOutput

Spring 2016 CS430 - Computer Architecture 8



Write Back (WB)

• Register-Register ALU

• Regs[rd] <- ALUOutput

• Register-Immediate ALU

• Regs[rt] <- ALUOutput

• Load instruction

• Regs[rt] <- LMD

Spring 2016 CS430 - Computer Architecture 9



WINMIPS64

Spring 2016 CS430 - Computer Architecture 10



WinMIPS64

• WinMIPS64 is an instruction set simulator

• You can:

• Load MIPS programs

• Execute one cycle at a time

• Visualize the pipeline

• You can download the software and read the 
documentation here:

• http://indigo.ie/~mscott/

Spring 2016 CS430 - Computer Architecture 11

http://indigo.ie/~mscott/


WinMIPS64 Example

• Open notepad, copy the following into a new 
notepad file, and save it as test.s

• Copy WinMIPS64 from the CS 430 public folder

• Open WinMIPS64

• From WinMIPS64, open test.s

• Step through the program using F7

Spring 2016 CS430 - Computer Architecture 12


