

23. Reduced Instruction Set Computers

Chapter 15 sections 15.1, 15.4

Spring 2015

CS430 - Computer Architecture

Reduced Instruction Set Computers

- Major architectural advances since the stored program concept in 1950 include (but are not limited to) the following:
 - **The Family of Computers** companies such as IBM, DEC, Sperry, and so on developed lines of computers around the same architecture with different price/performance ranges.
 - Microprogrammed Control provided flexibility and ease in regard to developing the control unit.
 - Cache Memory a great performance gain by not having to access main memory for everything.
 - **Pipelining** introduced parallelism into the architecture.
 - Multi-processing the use of multiple processors in various computer organizations.

RISC

• We now add RISC

- Small/Simple Instructions Set
- Large number of GPRs
- Emphasis on instruction pipelining

CISC, RISC, Superscalar Characteristics

	-	ex Instruction Set SC)Computer Set (RISC) Computer			Superscalar			
Characteristic	IBM 370/168	VAX 11/780	Intel 80486	SPARC	MIPS R4000	PowerPC	Ultra SPARC	MIPS R10000
Year developed	1973	1978	1989	1987	1991	1993	1996	1996
Number of instructions	208	303	235	69	94	225		
Instruction size (bytes)	2–6	2–57	1–11	4	4	4	4	4
Addressing modes	4	22	11	1	1	2	1	1
Number of general- purpose registers	16	16	8	40 - 520	32	32	40 - 520	32
Control memory size (Kbits)	420	480	246	—	—	—	—	—
Cache size (KBytes)	64	64	8	32	128	16-32	32	64

CISC vs RISC

• How did we get to this CISC state anyway?

As the cost of hardware has dropped, the cost of software has risen.

• The response from researchers has been to develop more powerful and complicated HLLs.

This resulted in the semantic gap.

Frequency of HLL Operations

	Dynamic Occurrence		Machine-I Weig	nstruction ghted	Memory-Reference Weighted		
	Pascal	С	Pascal	С	Pascal	С	
ASSIGN	45%	38%	13%	13%	14%	15%	
LOOP	5%	3%	42%	32%	33%	26%	
CALL	15%	12%	31%	33%	44%	45%	
IF	29%	43%	11%	21%	7%	13%	
GOTO	—	3%	—	_	—	—	
OTHER	6%	1%	3%	1%	2%	1%	

Semantic Gap

- How did designers respond to the semantic gap?
 - 1. Large instruction sets.
 - 2. Dozens of addressing modes.
 - 3. Various HLL statements implemented in hardware.

- How do the above help?
 - 1. Ease the task of the compiler writer.
 - 2. Improve execution efficiency.
 - 3. Provide support for even more complicated HLLs.

RISC Advocates

- RISC advocates report the following negative associated with CISC architectures:
 - 1. It is sometimes hard to find the machine instructions that fit the HLL case because of all of the options. Example, the VAX has 25 different ADD instructions.
 - 2. Code optimization is very complicated when trying to minimize the code, reduce execution time, and maximize the efficiency of the pipeline.
 - 3. It is not necessarily the case that a CISC will produce smaller and more efficient code.

RISC Characteristics

- 1. A fixed instruction length (typically 4 bytes)
- 2. Few addressing modes (1-5)
- 3. No addressing that required two memory fetches
- 4. No arithmetic operations and also load/store
- 5. At most one MEM op per instruction
- 6. Minimum of 32 GPRs