
17. Instruction Sets:
Characteristics and Functions

Chapter 12

Spring 2016 CS430 - Computer Architecture 1

Introduction

 Section 12.1, 12.2, and 12.3 pp. 406-418

 Computer Designer:

 Machine instruction set provides the functional
requirements for the processor

 Assembly Programmer:

 Machine instruction set provides the types of supported
data, registers, and the capabilities of the ALU

Spring 2016 CS430 - Computer Architecture 2

MACHINE INSTRUCTION
CHARACTERISTICS

Spring 2016 CS430 - Computer Architecture 3

ELEMENTS OF MACHINE
INSTRUCTIONS

Spring 2016 CS430 - Computer Architecture 4

Machine Instructions

 We have already learned that an instruction is
composed of a series of bytes where a portion of
the instruction is used for the opcode and the
other portion is used for one or more operands.

 Simple opcodes include: ADD, SUB, MUL, DIV,
MOV, ...

Spring 2016 CS430 - Computer Architecture 5

Recall the IAS Instruction and
Instruction Set

Spring 2016 CS430 - Computer Architecture 6

Instruction Format

• Another simple instruction format might be:

• What are the main differences between the above
instruction format and the IAS instruction format?

Spring 2016 CS430 - Computer Architecture 7

Elements of an Instruction

• Operation code (opcode)

• Do this

• Source Operand reference

• To this

• Result Operand reference

• Put the answer here

• Next Instruction Reference

• When you have done that, do this...

Spring 2016 CS430 - Computer Architecture 8

Instruction Types

 We have spent most of our time in the high-level
programming world. A high-level language must
eventually be translated into some kind of
machine language usually through some
assembly language.

 Machine language instructions typically fall into
one of four categories:

 Data Processing: Arithmetic and logical instructions

 Data Storage: Memory instructions

 Data Movement: I/O instructions

 Program Flow Control: Test and branch instructions

Spring 2016 CS430 - Computer Architecture 9

NUMBER OF ADDRESSES

Spring 2016 CS430 - Computer Architecture 10

Processor Architectures

• Historically, processor architectures have been
defined in terms of the number of addresses
contained within the instruction

Spring 2016 CS430 - Computer Architecture 11

Three Addresses

• Operand1, Operand2, Result OR
Result, Operand1, Operand2

• a = b + c;

• Maybe a fourth - next instruction (usually
implicit)

• Not common

• Needs very long words to hold everything

Spring 2016 CS430 - Computer Architecture 12

Two Addresses

• One address doubles as operand and result

• a = a + b

• Reduces length of instruction

• Requires some extra work

• Temporary storage to hold some results

Spring 2016 CS430 - Computer Architecture 13

One Address

• Implicit second address

• Usually a register (accumulator)

• Common on early machines

Spring 2016 CS430 - Computer Architecture 14

Zero Address

• Zero addresses can be used for some instructions

• Uses a stack

Spring 2016 CS430 - Computer Architecture 15

Example: 3-Address Instruction

• What 3-address instructions could be used to
compute the following:

𝑌 =
𝐴 − 𝐵

𝐶 + (𝐷 ∙ 𝐸)

Spring 2016 CS430 - Computer Architecture 16

Example: 2-Address Instruction

• What 2-address instructions could be used to
compute the following:

𝑌 =
𝐴 − 𝐵

𝐶 + (𝐷 ∙ 𝐸)

Spring 2016 CS430 - Computer Architecture 17

Example: 1-Address Instruction

• What 2-address instructions could be used to
compute the following:

𝑌 =
𝐴 − 𝐵

𝐶 + (𝐷 ∙ 𝐸)

Spring 2016 CS430 - Computer Architecture 18

Example: 0-Address Instruction

 What would the assembly language look like for
the equation using a stack architecture?

𝑌 =
𝐴 − 𝐵

𝐶 + (𝐷 ∙ 𝐸)

Spring 2016 CS430 - Computer Architecture 19

Instruction Set Design

• When designing an instruction set, consider

• Operation repertoire
• How many ops?

• What can they do?

• How complex are they?

• Data types

• Instruction formats
• Length of opcode field

• Registers
• Number of CPU registers available

• Which operations can be performed on which registers?

• Addressing modes

• RISC v CISC

Spring 2016 CS430 - Computer Architecture 20

TYPES OF OPERANDS

Spring 2016 CS430 - Computer Architecture 21

Types of Operands

• We know that the processor operates on data.
General categories of data are:
• Addresses

• Numbers
• Binary integer (or binary fixed point)

• Binary floating point

• Decimal (packed decimal)

• Characters
• ASCII etc.

• Logical Data
• Bits or flags

Spring 2016 CS430 - Computer Architecture 22

INTEL X86 DATA TYPES

Spring 2016 CS430 - Computer Architecture 23

x86 Data Types

 8 bit Byte

 16 bit word

 32 bit double word

 64 bit quad word

 128 bit double quadword

 Addressing is by 8 bit unit

 Words do not need to align at even-numbered address

 Data accessed across 32 bit bus in units of double
word read at addresses divisible by 4

 Little endian

Spring 2016 CS430 - Computer Architecture 24

x86 Data Types

Spring 2016 CS430 - Computer Architecture 25

Data Type Description

General Byte, word (16 bits), doubleword (32 bits),
quadword (64 bits), and double quadword (128
bits) locations with arbitrary binary contents.

Integer A signed binary value contained in a byte, word, or
doubleword, using twos complement
representation.

Ordinal An unsigned integer contained in a byte, word, or
doubleword.

Unpacked binary
coded decimal
(BCD)

A representation of a BCD digit in the range 0
through 9, with one digit in each byte.

Packed BCD Packed byte representation of two BCD digits;
value in the range 0 to 99.

Near pointer A 16-bit, 32-bit, or 64-bit effective address that
represents the offset within a segment. Used for all
pointers in a nonsegmented memory and for
references within a segment in a segmented
memory.

x86 Data Types

Spring 2016 CS430 - Computer Architecture 26

Far pointer A logical address consisting of a 16-bit segment selector
and an offset of 16, 32, or 64 bits. Far pointers are used for
memory references in a segmented memory model where
the identity of a segment being accessed must be specified
explicitly.

Bit field A contiguous sequence of bits in which the position of each
bit is considered as an independent unit. A bit string can
begin at any bit position of any byte and can contain up to
32 bits.

Bit string A contiguous sequence of bits, containing from zero to 232
– 1 bits.

Byte string A contiguous sequence of bytes, words, or doublewords,
containing from zero to 232 – 1 bytes.

Floating point See Figure 12.4.

Packed SIMD (single
instruction, multiple
data)

Packed 64-bit and 128-bit data types

x86 Data Types

Spring 2016 CS430 - Computer Architecture 27

signed

signed

signed

x86 Data Types

Spring 2016 CS430 - Computer Architecture 28

x86 Data Types

 The Pentium floating-point numbers conform to the
IEEE 754 standard.

 Pentium data is stored using little-endian style which
means that the least significant byte is stored in the
lowest address.

 For the C declaration:

int intVal = -10;

 Show what memory would look like if the variable
intVal is located at memory location 1000. Use HEX
notation.

Spring 2016 CS430 - Computer Architecture 29

ARM DATA TYPES

Spring 2016 CS430 - Computer Architecture 30

ARM Data Types

 8 (byte), 16 (halfword), 32 (word) bits

 Halfword and word accesses should be word aligned

 Nonaligned access alternatives

 Supports Big-Endian and Little-Endian

 Unsigned integer interpretation supported for all types

 Twos-complement signed integer interpretation supported for
all types

 Majority of implementations do not provide floating-point
hardware

 Saves power and area

 Floating-point arithmetic implemented in software

 Optional floating-point coprocessor

 Single- and double-precision IEEE 754 floating point data types

Spring 2016 CS430 - Computer Architecture 31

