

16. Floating Point Numbers

Chapter 10, section 10.4

Order Summary	
$1 \times$ American Apparel T-Shirt (S)	$\$ 14.99$
Subtotal	$\$ 14.99$
Shipping	$\$ 3$
Total	
$\$ 17.990000000000002$	

FLOATING POINT NUMBERS

Floating Point

- Floating point is the formulaic representation that approximates a real number so support a tradeoff between range and precision
- Floating point representation is based on scientific notation
$-0.55_{(10)}$ is equivalent to $5.5_{(10)} \times 10^{-1}$
- Use base 2 instead of base 10
$-101.1_{(2)}$ is equivalent to $1.011_{(2)} \times 2^{2}$

Mapping Floating Point to Words

- How do we map a number in binary scientific notation onto a word?
- Use the following:
- Sign: 1 for negative, 0 for positive
- Exponent: the base (2) is raised to the exponent
- Significand (mantissa): the digits in the number
- Notice that the base is implicit and not stored

Exponent

- Let's assume that the number of bits used to represent the exponent is 4 bits
- What is the range of values for the exponent?
- What is the problem with this?
- What is the solution? Biased Exponent!
- Biased Exponent = True Exponent + Bias
- Bias = $2^{\mathrm{k}-1}-1$, where k is the number of bits used to represent the exponent

Significand and Normalized Numbers

- Floating point numbers can be expressed in many ways:
-0.110×2^{5}
-110×2^{2}
-0.0110×2^{6}
- To simplify operations on floating point numbers, they must be normalized
- A normal number is one in which the most significant digit of the significand is nonzero
- Since the most significant digit in binary is always 1 , we do not store it in floating point representation.

Floating Point Numbers

- General form for floating point numbers:

$$
\pm 1 . b b b \ldots b \times 2^{ \pm E}
$$

- Where:
- b is a binary digit (0 or 1)
$-E$ is the exponent

Examples

- Fill in the following table:

Decimal	Binary	Normalized Floating Point	Sign (1-bit)	Biased Exponent (4-bits)	Significand (3 bits)
5.5	101.1	1.011×2^{2}			
-96					
			0	0101	100

Sign (1-bit)	Biased Exponent (4-bits)	Significand (3-bits)

REPRESENTABLE VALUES

Example Word

\section*{| Sign (1-bit) | Biased Exponent (4-bits) | Significand (3-bits) |
| :--- | :--- | :--- |}

- What is the range for the biased exponent?
- What is the range for the significand?

Representable Numbers

Sign (1-bit)	Biased Exponent (4-bits)	Significand (3-bits)

- What is the smallest possible positive number that can be represented with example format
- What is the largest positive number that can be represented with the example format?

Representable Numbers

- Floating-point representations can't possibly represent all of the numbers in its range as there are only $2^{8}=256$ distinct values
- Example: Represent $51_{(10)}$ in this scheme

C++ Example

- Write a program that assigns 3.99 to a float variable
- Debug the program and look at what value is actually stored in the variable
- Is it what you expected?

Trade-offs

- Precision:
- More significand bits == more precision
- Range:
- More exponent bits == wider range of numbers to represent

©
 754-2008

IEEE STANDARD 754-2008

IEEE Standard 754 Floating-point Format

- IEEE 754 adopted in 1985 and revised in 2008
- There are 32-bit (single precision), 64-bit (double precision), and 128-bit (quadruple precision) representations
- Similar to the 8-bit format we've been using so far

IEEE 754-2008 Formats

IEEE 754-2008 Bias

- What is the value of the bias for each format:
- Binary32 format
- Binary64 format
- Binary128 format

Examples

- What decimal value does $\mathrm{CO} \mathrm{E} 0000_{(16)}$ represent in the IEEE 754 Binary 32 format.
- What decimal value does C03E000000000000 ${ }_{(16)}$ represent in the IEEE 754 Binary64 format.

IEEE 754-2008

- It is important to note that not all bit patterns in the IEEE format are interpreted in the usual way. Here are some exceptions. Notice that an significand is called a fraction in IEEE 754 language.

1. An exponent of 0 with a fraction of 0 represents +0 or -0 depending on the sign bit.
2. An exponent of all 1's with a fraction of 0 represents positive or negative infinity.
3. An exponent of all 1's with a nonzero fraction represents a NaN (not a number) and is used to represent various exceptions.
4. Exponents in the range of $1-254$ with normalized fractions implies the resulting exponent value will be in the range of -126 to +127 . Since the number is normalized, we do not need to represent the 1 . This bit is implied and called the hidden 1 . It is actually a way of adding one more bit of precision to the fraction.

Examples

- What is the representation of each of the following in IEEE 754 Binary 32 representation. Express your result in HEX.

1. -1.0
2. $1 / 32$
3. -14.5
