

## 16. Floating Point Numbers

#### Chapter 10, section 10.4

# FLOATING POINT NUMBERS

## Floating Point

- Floating point is the formulaic representation that approximates a real number so support a tradeoff between *range* and *precision*
- Floating point representation is based on scientific notation

-  $0.55_{(10)}$  is equivalent to  $5.5_{(10)} \times 10^{-1}$ 

• Use base 2 instead of base 10 -  $101.1_{(2)}$  is equivalent to  $1.011_{(2)} \times 2^2$ 

## Mapping Floating Point to Words

- How do we map a number in binary scientific notation onto a word?
- Use the following:
  - Sign: 1 for negative, 0 for positive
  - Exponent: the base (2) is raised to the exponent
  - Significand (mantissa): the digits in the number
- Notice that the base is implicit and not stored

#### Exponent

- Let's assume that the number of bits used to represent the exponent is 4 bits
- What is the range of values for the exponent?
- What is the problem with this?
- What is the solution? Biased Exponent!
  - Biased Exponent = True Exponent + Bias
  - Bias =  $2^{k-1} 1$ , where k is the number of bits used to represent the exponent

## Significand and Normalized Numbers

- Floating point numbers can be expressed in many ways:
  - 0.110 X 2<sup>5</sup>
  - 110 X 2<sup>2</sup>
  - 0.0110 X 2<sup>6</sup>
- To simplify operations on floating point numbers, they must be normalized
- A normal number is one in which the most significant digit of the significand is nonzero
- Since the most significant digit in binary is always 1, we do not store it in floating point representation.

## Floating Point Numbers

• General form for floating point numbers:

 $\pm 1.bbb \dots b \times 2^{\pm E}$ 

- Where:
  - b is a binary digit (0 or 1)
  - E is the exponent

#### Examples

• Fill in the following table:

| Decimal | Binary | Normalized<br>Floating Point | Sign (1-bit) | Biased<br>Exponent<br>(4-bits) | Significand<br>(3 bits) |
|---------|--------|------------------------------|--------------|--------------------------------|-------------------------|
| 5.5     | 101.1  | 1.011 X 2 <sup>2</sup>       |              |                                |                         |
| -96     |        |                              |              |                                |                         |
|         |        |                              | 0            | 0101                           | 100                     |

| Sign (1-bit) | Biased Exponent (4-bits) | Significand (3-bits) |
|--------------|--------------------------|----------------------|

# **REPRESENTABLE VALUES**

Spring 2016

# Example Word

| Sign (1-bit) | Biased Exponent (4-bits) | Significand (3-bits) |
|--------------|--------------------------|----------------------|
|--------------|--------------------------|----------------------|

- What is the range for the biased exponent?
- What is the range for the significand?

#### **Representable Numbers**

| Sign (1-bit) Biased Exponent (4-bits) | Significand (3-bits) |
|---------------------------------------|----------------------|
|---------------------------------------|----------------------|

• What is the smallest possible positive number that can be represented with example format

• What is the largest positive number that can be represented with the example format?

#### **Representable Numbers**

- Floating-point representations can't possibly represent all of the numbers in its range as there are only  $2^8 = 256$  distinct values
- Example: Represent  $51_{(10)}$  in this scheme

#### C++ Example

- Write a program that assigns 3.99 to a float variable
- Debug the program and look at what value is actually stored in the variable
- Is it what you expected?

#### Trade-offs

- Precision:
  - More significand bits == more precision
- Range:
  - More exponent bits == wider range of numbers to represent



# IEEE STANDARD 754-2008

## IEEE Standard 754 Floating-point Format

• IEEE 754 adopted in 1985 and revised in 2008

There are 32-bit (single precision), 64-bit (double precision), and 128-bit (quadruple precision) representations

 Similar to the 8-bit format we've been using so far

#### IEEE 754-2008 Formats



#### IEEE 754-2008 Bias

- What is the value of the bias for each format:
  - Binary32 format

– Binary64 format

– Binary128 format

#### Examples

- What decimal value does  $C03E0000_{(16)}$  represent in the IEEE 754 Binary32 format.

#### IEEE 754-2008

- It is important to note that not all bit patterns in the IEEE format are interpreted in the usual way. Here are some exceptions. Notice that an significand is called a fraction in IEEE 754 language.
  - 1. An exponent of 0 with a fraction of 0 represents +0 or -0 depending on the sign bit.
  - 2. An exponent of all 1's with a fraction of 0 represents positive or negative infinity.
  - 3. An exponent of all 1's with a nonzero fraction represents a NaN (not a number) and is used to represent various exceptions.
  - 4. Exponents in the range of 1-254 with normalized fractions implies the resulting exponent value will be in the range of -126 to +127. Since the number is normalized, we do not need to represent the 1. This bit is implied and called the hidden 1. It is actually a way of adding one more bit of precision to the fraction.

#### Examples

 What is the representation of each of the following in IEEE 754 Binary32 representation. Express your result in HEX.

1. -1.0

2. 1/32

3. -14.5