15. Multiplication

Chapter 10, section 10.3

Spring 2016

CS430 - Computer Architecture

MULTIPLICATION OF UNSIGNED INTEGERS

1011Multiplicand (11)×1101Multiplier (13)

Computerized Multiplication

- How can we make multiplication more efficient?
 - 1. Perform a running addition rather than adding once at the end
 - 2. We can save time on partial products by shifting

- The multiplier and multiplicand are loaded into Q and M respectively and a third register (A) is needed and initially set to 0.
- Read multiplier bit one at a time
- If Q_0 is 1, then multiplicand is added to A register and the result is stored in A with C used for overflow.
- If Q_0 is 0, then no addition is performed.
- Shift C, all A, and all Q bits right one bit
- Repeat from 1 until each bit in original multiplier is processed

1011 x 1101

Example

MULTIPLICATION OF 2'S COMPLEMENT INTEGERS

• What would happen if we interpret the following values as 2's complement values?

2's Complement Multiplication

 Straightforward multiplication will *not* work if either the multiplicand or the multiplier are negative

 Here is another way of looking at unsigned integer multiplication:

$ \begin{array}{r} 1011 \\ \times 1101 \\ 00001011 \\ 00000000 \\ 00101100 \\ 01011000 \\ 10001111 \end{array} $	$1011 \times 1 \times 2^{0}$ $1011 \times 0 \times 2^{1}$ $1011 \times 1 \times 2^{2}$ $1011 \times 1 \times 2^{3}$
10001111	

Another Example

• Multiply the following two numbers showing what is happening in terms of powers of 2:

0110 X 0110

Negative Multiplicand

• Multiply the following two numbers showing what is happening in terms of powers of 2:

1011 X 0010

• Is the solution correct? How can we fix it?

Negative Multiplier

• Multiply the following two numbers showing what is happening in terms of powers of 2:

0101 X 1101

• What is causing the incorrect solution?

2's Complement Multiplication

- One solution: convert both multiplier and multiplicand to positive numbers, perform the multiplication, and the take the 2's complement of the result
 - Complicated and expensive
- Another solution: Booth's Algorithm
 - Developed by Andrew Donald Booth in 1950 in London
 - Used desk calculators that were faster at shifting than adding and created the algorithm to increase their speed

0101 X 1101

Booth's Algorithm

CS430 - Computer Architecture