15. Multiplication

Chapter 10, section 10.3

MULTIPLICATION OF UNSIGNED INTEGERS

Unsigned Integer Multiplication

1011
 $\times 1101$
 Multiplicand (11) Multiplier (13)

Computerized Multiplication

- How can we make multiplication more efficient?

1. Perform a running addition rather than adding once at the end
2. We can save time on partial products by shifting

Unsigned Integer Multiplication

- The multiplier and multiplicand are loaded into Q and M respectively and a third register (A) is needed and initially set to 0 .
- Read multiplier bit one at a time
- If Q_{0} is 1 , then multiplicand is added to A register and the result is stored in A with C used for overflow.
- If Q_{0} is 0 , then no addition is performed.
- Shift C, all A, and all Q bits right one bit
- Repeat from 1 until each bit in original multiplier is processed

Product
in \mathbf{A}, \mathbf{Q}

MULTIPLICATION OF 2'S COMPLEMENT INTEGERS

Unsigned Integer Multiplication

- What would happen if we interpret the following values as 2's complement values?

2's Complement Multiplication

- Straightforward multiplication will not work if either the multiplicand or the multiplier are negative

Unsigned Integer Multiplication

- Here is another way of looking at unsigned integer multiplication:

```
        1 0 1 1
        \times1101
        1011
        0 0 0 0
        1 0 1 1
        1011
10001111
```

1011

$\times 1101$$\quad$| | |
| :--- | :--- |
| 00001011 | $1011 \times 1 \times 2^{0}$ |
| 00000000 | $1011 \times 0 \times 2^{1}$ |
| 00101100 | $1011 \times 1 \times 2^{2}$ |
| $\frac{01011000}{10001111}$ | $1011 \times 1 \times 2^{3}$ |

Another Example

- Multiply the following two numbers showing what is happening in terms of powers of 2 :

0110×0110

Negative Multiplicand

- Multiply the following two numbers showing what is happening in terms of powers of 2 :
1011×0010
- Is the solution correct? How can we fix it?

Negative Multiplier

- Multiply the following two numbers showing what is happening in terms of powers of 2 :
0101×1101
- What is causing the incorrect solution?

2's Complement Multiplication

- One solution: convert both multiplier and multiplicand to positive numbers, perform the multiplication, and the take the 2 's complement of the result
- Complicated and expensive
- Another solution: Booth's Algorithm
- Developed by Andrew Donald Booth in 1950 in London
- Used desk calculators that were faster at shifting than adding and created the algorithm to increase their speed

0101
X 1101

Booth's Algorithm

