
11. Cache Memory

Chapter 4: section 4.3

Spring 2016 CS430 - Computer Architecture 1



Mapping Techniques

• Cache is much smaller than memory

• We need a technique to map memory blocks onto 
cache lines

• Three techniques:
• Direct Mapping

• Associative Mapping

• Set-Associative Mapping

Spring 2016 CS430 - Computer Architecture 2



ASSOCIATIVE MAPPING

Spring 2016 CS430 - Computer Architecture 3



Associative Mapping

 With associative mapping, any block of memory 
can be loaded into any line of the cache. 

 A memory address is simply a tag and a word 
(note: there is no field for line #). 

 To determine if a memory block is in the cache, 
each of the tags are simultaneously checked for a 
match.

Spring 2016 CS430 - Computer Architecture 4



Associative Mapping

Spring 2016 CS430 - Computer Architecture 5



Associative Mapping

 Address Length is (s + w) bits

 Number of addressable units is 2𝑠+𝑤 bytes

 Block size = line size = 2𝑤 bytes

 Number of blocks in main memory is 
2𝑠+𝑤

2𝑤
= 2𝑠

 Number of cache lines is undetermined

 Tag size is (s) bits

Spring 2016 CS430 - Computer Architecture 6



Associative Mapping Example

Spring 2016 CS430 - Computer Architecture 7



Associative Mapping Example

Spring 2016 CS430 - Computer Architecture 8



Associative Mapping

• Advantage of associative mapping:

• There is flexibility when mapping a block to any line of the 
cache

• Disadvantages of associative mapping:

• A replacement algorithm must be used to determine which 
line of cache to swap out

• More space is needed for the tag field

• The most important disadvantage is the complex circuitry 
needed to examine all of the tags in parallel in the cache

Spring 2016 CS430 - Computer Architecture 9



SET-ASSOCIATIVE 
MAPPING

Spring 2016 CS430 - Computer Architecture 10



Set Associative Mapping

 Utilizes the strengths of direct and associative 
mapping while trying to reduce their 
disadvantages

Spring 2016 CS430 - Computer Architecture 11



Set-Associative Mapping

• The cache is divided into 𝑣 sets of 𝑘 lines per set

• 𝑚 = 𝑣 × 𝑘

• 𝑖 = 𝑗 𝑚𝑜𝑑𝑢𝑙𝑜 𝑣

• Where:
• 𝑖 = cache set number

• 𝑗 = main memory block number

• 𝑚 = number of lines in cache

• 𝑣 = number of sets

• 𝑘 = number of lines in each set

Spring 2016 CS430 - Computer Architecture 12



Physical Implementation:

𝑣 associative caches

Spring 2016 CS430 - Computer Architecture 13



Physical Implementation:

𝑘 direct mapping caches

Spring 2016 CS430 - Computer Architecture 14



k-way set associative

 What are the values of each of the following:

• Block size 

• # blocks in main MM

• # lines in set

• # of sets

• # lines in cache

• size of the cache

• tag size

Spring 2016 CS430 - Computer Architecture 15



Two-way set-associative Example

Spring 2016 CS430 - Computer Architecture 16



Two-way set-associative

Spring 2016 CS430 - Computer Architecture 17



CONTINUE ELEMENTS OF 
CACHE DESIGN

Spring 2016 CS430 - Computer Architecture 18



Cache Replacement Algorithms

• Replacement algorithms are only needed for associative and 
set associative techniques. To achieve high speed, these 
algorithms must be implemented in hardware.

• Least Recently Used (LRU) – replace the cache line that has been in 
the cache the longest with no references to it (most effective)

• First-in First-out (FIFO) – replace the cache line that has been in the 
cache the longest

• Least Frequently Used (LFU) – replace the cache line that has 
experienced the fewest references

• Random – pick a line at random from the candidate lines (simulations 
have shown this to be slightly inferior to the other algorithms)

Spring 2016 CS430 - Computer Architecture 19



Cache Write Policies

• If a cache line has not been modified, then it can be 
overwritten immediately; however, if one or more words have 
been written to a cache line, then main memory must be 
updated before replacing the cache line.

• There are two main potential write problems:

• If an I/O module is able to read/write to memory directly, then if the 
cache has been modified a memory read cannot happen right away. If 
memory is written to, then the cache line becomes invalid.

• If multiple processors each have their own cache, if one processor 
modifies its cache, then the cache lines of the other processors could 
be invalid.

Spring 2016 CS430 - Computer Architecture 20



Cache Write Policies

• Write through – this is the simplest technique where all write 
operations are made to memory as well as cache ensuring main 
memory is always valid. This generates a lot of main memory traffic 
and creates a potential bottleneck

• Write back – updates are made only to the cache and not to main 
memory until the line is replaced

• Note: Certain studies have shown that about 15% of memory 
references are writes except for HPC may approach 33% (vector-
vector multiplication) and 50% (matrix transposition)

• Cache coherency – keeps the same word in other caches up to date 
using some technique. This is an active field of research.

Spring 2016 CS430 - Computer Architecture 21



Cache Coherency

• Cache coherency - keeps the same word in other 
caches up to date. This is an active field of research.

• Bus watching with write through - each cache 
controller monitors bus lines to detect write operations by 
other bus masters. If so, the cache entry is marked invalid

• Hardware transparency - additional hardware is used to 
write through changes to memory AND update all caches

• Noncacheable memory - a portion of main memory is 
shared by more than one processor and all accesses are 
cache misses (.i.e. shared memory is never copied into the 
cache)

Spring 2016 CS430 - Computer Architecture 22



Unified vs Split Caches

• Recent cache designs have gone from a unified cache 
to a split cache design (one for instructions and one 
for data).

• Unified caches have the following advantages:
• Unified caches typically have a higher hit rate
• Only one cache is designed and implemented

• Split caches have the following advantages:
• Parallel instruction execution and prefetching is better 

handled because of the elimination of contention between 
the instruction fetch/decode unit and execution unit.

Spring 2016 CS430 - Computer Architecture 23


