Cache
Line @
Line 1 Set0
Line 2 Block 256
Line 2 Set0 .
ne Block 257
Fl]
)
F)
ems R } sermz-1 \ \g
Line m-1 Block 512

~
Block 513

11. Cache Memory

g
Block 768

~
Block 769

Chapter 4: section 4.3

Spring 2016 CS430 - Computer Architecture 1

Mapping Techniques

 Cache is much smaller than memory

« We need a technique to map memory blocks onto
cache lines

 Three techniques:
« Direct Mapping
« Associative Mapping
« Set-Associative Mapping

Spring 2016 CS430 - Computer Architecture 2

ASSOCIATIVE MAPPING

Associative Mapping

o With associative mapping, any block of memory
can be loaded into any line of the cache.

« A memory address is simply a tag and a word
(note: there is no field for line #).

« To determine if a memory block is in the cache,
each of the tags are simultaneously checked for a
match.

Associative Mapping

Main Memory

L]
- e e

SHW
7
Memaory Address Tag Data
| Tag | ward | |
L
5L o
Y
Wy | e |
1 = 1
1 -
|
W L
Compare U
[- |
| ihiti -
N —— thit in cache)
0if mo match I |
5
P I-m—1
0 if match
M[misﬁ in cachel)

Spring 2016 CS430 - Computer Architecture

Associative Mapping

Address Length is (s + w) bits
Number of addressable units is 25*W bytes
Block size = line size = 2% bytes

25+W

Number of blocks in main memory is = 25

2W
Number of cache lines is undetermined

Tag size is (s) bits

Associative Mapping Example

Tag Word
Main Memory Address =
< ; >
22 bits 2 bits
Main memory address (binary)
Tag (hex) Tag Word Data
000000 000000000000000000000000 | 13579246 F == =1
000001 0000i000000000000000000100 1
1
1
~ ~
. L I
1
1
1
1
1 .
I Line
1 Tag Data Number
1 r= =|3FFFFE| 11223344 jJ 0000
= = = =4058CE7 | FEDCBA98 | 0001
T 2 TN
058CE6 '0001011000110011-1001100& ! 1 1
058CE7 FEDCBASS | =1 'S ~
058CES8
= = bk =& == 3FFFFD| 33333333 | 3FFD
1 l = =d= =)000000f 13579246 | 3FFE
1 = = g = o SFFFFF 2458g468 3FFF
]] 1
1 1 1 . . .
1 1] 22 bits 32 bits
~A_ » .
- : 16 Kline Cache
1 1 1
]] 1
P 1 1 1
SFFFFD (TTITITATITITIININGGI0Y | 33333333 =t 1 !
SFFFFE J111011L _1_1__1J-_l_l__l_ul_J-_l_ll_Q_Q_Q' 11223344 = ==L -4)
3FFFFF ._l_;l._l_l.]:_]:J-_J- 1__]___1_; J-_]_-_]:_J:'J-_J-_l-_]_-]._J._Q_Q' 24682468 h m m = 1 Note: Memory address values are
| in binary representation;
S p rin g 2016 37 bits other values are in hexadecimal 7

16 MByte Main Memory

Associative Mapping Exampl§

‘Word
Main Memory Address =
< >
22 bits 2 bits
Address Data
00000 [1570240 F = = =«
200004 1
1
-y -~ l
— = '
1
1
|
1
1
. Line
1 Ta Data Number
" - 51:!':‘??? 11223344 | 0000
= = F == q059CE7 | FEDCHASS | 0001
g 4 [
163398 T
16334 | FEDCBASE b «! R . ~_
163340
A o T
- = dod-dIFFFED] 33333333 | 3FED
! |l = odw|000000] 13572246 | 3FFE
! - b= FFFFF| 24682468 | 3FEF
1 ! 1
' : & » < 4
" . 22 bits 32 bits
- 16 Kline Cache
1 1]
1 ' 1
a ¥ e = 1 1 '
1 1 1
FFEFFs | 333333 b~ 1
SFEFFa |l M2 b mm =k a2
FEFFFC | 245602468 b = = =1
+—>
32 bits

Spring 2016

16 MByte Main Memory

Associative Mapping

« Advantage of associative mapping:

« There is flexibility when mapping a block to any line of the
cache

« Disadvantages of associative mapping:

* A replacement algorithm must be used to determine which
line of cache to swap out

« More space is needed for the tag field

« The most important disadvantage is the complex circuitry
needed to examine all of the tags in parallel in the cache

SET-ASSOCIATIVE
MAPPING

Set Associative Mapping

« Utilizes the strengths of direct and associative
mapping while trying to reduce their
disadvantages

Spring 2016 CS430 - Computer Architecture

11

Set-Associative Mapping

 The cache is divided into v sets of k lines per set
s m=vXk

* [=jmodulov

« Where:
« | = cache set number
« j = main memory block number
« m = number of lines in cache
« v = number of sets
k = number of lines in each set

Spring 2016 CS430 - Computer Architecture

Physical Implementation:
v assoclative caches

1
First v blocks of

main memory
(equal to number of sets)

Spring 2016

el

Cache memory - set 0

Cache memory - set v-1

klines

L, Y

13

Physical Implementation:
k direct mapping caches

By Lo

_. one
AF et

. . L] . L]

L] L] L] L I I L] L]

L L] L] L] L]

BV—l Lv—l
First v blocks of Cache memory - way 1 Cache memory - way k
main memory

(equal to number of sets)

Spring 2016 CS430 - Computer Architecture 14

v lines

k-way set associative

« What are the values of each of the following:

- Block size

W

+ # blocks in main MM (_\/LA

- # lines in set

- # of sets

- # lines in cache
- size of the cache

- tag size

Spring 2016

CS4:

Cache
Tag Data
Word
| Tagl Set | | | Fp
s—i g d w// I F
L]
I o
| L]
= S
(] =
sen L]
Y [
Compare () s
A
0
| 0
(hit in cache)] 5,
1 if match
0 1f no match
I
0if match - _
1 if no match

(miss m cache)

Set 0

Set1

Main Memory

Bp

By

Two-way set-associative Example

Main memory address (binary)

Tag - - Main Memory Address =
Ta; Set + Word
(hex) ,___J_g___.f__i‘_t_"_rﬂ_ﬁ Data Tag Set Word
000 13570246 F - = =1
o | [
1
| . >4 . >
I~ i o 1 9 bits 13 bits 2 bits
1
1
000 1
000 1
. el R i el i
. 1 Set
1

Tag Data Number TaE Data
TITT77777 == === =000] 13579246 J 0000 JO2Cy 77777777 | ™
11235813 = mm = === ()2C| 11235813 J 0001

- . = 7 i = 7 | =

0z2cC
0z2C

02C FEDCBA9S === = = = = g 02C| FEDCBA98 | OCE7

~— ~

[§
)

-

1FF| 11223344 | 1FFE
02C) 12345678 | 1FFF |1FF) 24682468 |=

02C 00T0ITO0IITII111111/1100/| 12345678 = = = =
.

.

o 9 bats 32 bats 9 buts 32 bits
1FF :
1FF 16 Kline Cache

- mmmmEm m m m om omoapoy
- e mm omm mm omm o omm omm omm d

1FF
1FF

11223344 === = = d
24682468

B
32 bits
Spring 2016 . Note: Memory address values are
. J 16 MByte Main Memory m binary representation;

other values are in hexadecimal

Two-way set-associative

Tag Set+Word Data

000D IS/ ucin F == = 4
6004 '
]
)
100 g o '
! 1
]
7FF8 !
7EFC !
g R S S e g ey
] ' Sat !
; i) Tag Data Number 1ag Data !
coeD [777277777 b =! * === JTO0) 19570240 | 0000 [O20) 77777777] ='
0004 1123501 pow o wwewd(2C) 11235010 | 0001
km ™ -~ L L ™ e -~
020 33GC | FEDCBA9S === === = o 12C) FEDCBA%E | OCE7
i = (e g &2 g = e & I
r== IFF] 11223344 | IFFE
EFC L2340 e e e e e = q 020 12545078) 17FF LITFL 24082408)=
- 1 |
, 9bits 32bits 9bits 32bits |
cooon 1 |
0004 i 16 Kling Cache '
1 |
. ! 1 |
IFF ™~ e 1 |
1 |
] |
7FFR| 11222344 b === = = . |
TEFC] 28002300 b = = m e m e m e m m m - - - -—-—-—-——————
—P>

Spring 2016

32 bits

16 MByte Main Memory

17

CONTINUE ELEMENTS OF
CACHE DESIGN

Cache Replacement Algorithms

« Replacement algorithms are only needed for associative and
set associative techniques. To achieve high speed, these
algorithms must be implemented in hardware.

« Least Recently Used (LRU) - replace the cache line that has been in
the cache the longest with no references to it (most effective)

« First-in First-out (FIFO) - replace the cache line that has been in the
cache the longest

« Least Frequently Used (LFU) - replace the cache line that has
experienced the fewest references

« Random - pick a line at random from the candidate lines (simulations
have shown this to be slightly inferior to the other algorithms)

Cache Write Policies

« If a cache line has not been modified, then it can be
overwritten immediately; however, if one or more words have
been written to a cache line, then main memory must be
updated before replacing the cache line.

 There are two main potential write problems:

« If an I/O module is able to read/write to memory directly, then if the
cache has been modified a memory read cannot happen right away. If
memory is written to, then the cache line becomes invalid.

« If multiple processors each have their own cache, if one processor
Bwo_difiels_,dits cache, then the cache lines of the other processors could
e invalid.

Cache Write Policies

Write through - this is the simplest technique where all write
operations are made to memory as well as cache ensuring main
memory is always valid. This generates a lot of main memory traffic
and creates a potential bottleneck

Write back - updates are made only to the cache and not to main
memory until the line is replaced

Note: Certain studies have shown that about 15% of memory
references are writes except for HPC may approach 33% (vector-
vector multiplication) and 50% (matrix transposition)

Cache coherency - keeps the same word in other caches up to date
using some technique. This is an active field of research.

Cache Coherency

« Cache coherency - keeps the same word in other
caches up to date. This is an active field of research.

Bus watching with write through - each cache
controller monitors bus lines to detect write operations by
other bus masters. If so, the cache entry is marked invalid

Hardware transparency - additional hardware is used to
write through changes to memory AND update all caches

Noncacheable memory - a portion of main memory is
shared by more than one processor and all accesses are
cache misses (.i.e. shared memory is never copied into the
cache)

Unified vs Split Caches

Recent cache designs have gone from a unified cache
to a split cache design (one for instructions and one

for data).

Unified caches have the following advantages:
« Unified caches typically have a higher hit rate
 Only one cache is designed and implemented

Split caches have the following advantages:

« Parallel instruction execution and prefetching is better
handled because of the elimination of contention between
the instruction fetch/decode unit and execution unit.

