

3. Digital Logic

Chapter 11 Boolean Algebra and Gates

Sections 11.1, 11.2

- Reading: pp.365-370
- Good Problems to Work: 11.1 a., 11.3 a.

BOOLEAN ALGEBRA

Spring 2016

Boolean Algebra

- Boolean algebra is a convenient tool for:
 - 1. describing the function of digital circuitry
 - 2. simplifying the implementation of said function
- Boolean algebra uses
 - 1. logical variables (values are 0 or 1)
 - 2. operations on logical variables

AND, OR

Boolean Operators of Two Input Variables

Р	Q	NOT P (P)	P AND Q (P • Q)	P OR Q (P + Q)	$\begin{array}{c} \mathbf{P} \text{ NAND } \mathbf{Q} \\ (\overline{\mathbf{P} \cdot \mathbf{Q}}) \end{array}$	$\frac{P \text{ NOR } Q}{(\overline{P} + \overline{Q})}$	$\begin{array}{c} \mathbf{P} \mathbf{XOR} \mathbf{Q} \\ (\mathbf{P} \oplus \mathbf{Q}) \end{array}$
0	0	1	0	0	1	1	0
0	1	1	0	1	1	0	1
1	0	0	0	1	1	0	1
1	1	0	1	1	0	0	0

Truth table of each logical operation

Logical Operators

- AND can be $A * B, A \cdot B, or AB$
- OR is A + B
- NOT can be $A' or \bar{A}$

 Note: In the absence of parentheses, AND takes precedence over OR

Boolean Operators of *n* Input Variables

Operation	Expression	Output = 1 if
AND	A • B •	All of the set $\{A, B, \ldots\}$ are 1.
OR	A + B +	Any of the set $\{A, B,\}$ are 1.
NAND	A ●B●K	Any of the set $\{A, B, \ldots\}$ are 0.
NOR	$\overline{A+B+K}$	All of the set $\{A, B, \ldots\}$ are 0.
XOR	$A \oplus B \oplus \dots$	The set {A, B,} contains an odd number of ones.

Identities of Boolean Algebra

Basic Postulates						
$\mathbf{A} \bullet \mathbf{B} = \mathbf{B} \bullet \mathbf{A}$	$\mathbf{A} + \mathbf{B} = \mathbf{B} + \mathbf{A}$	Commutative Laws				
$\mathbf{A} \bullet (\mathbf{B} + \mathbf{C}) = (\mathbf{A} \bullet \mathbf{B}) + (\mathbf{A} \bullet \mathbf{C})$	$\mathbf{A} + (\mathbf{B} \bullet \mathbf{C}) = (\mathbf{A} + \mathbf{B}) \bullet (\mathbf{A} + \mathbf{C})$	Distributive Laws				
$1 \cdot A = A$	0 + A = A	Identity Elements				
$\mathbf{A} \bullet \mathbf{\overline{A}} = 0$	$A + \overline{A} = 1$	Inverse Elements				
Other Identities						
$0 \bullet \mathbf{A} = 0$	1 + A = 1					
$\mathbf{A} \bullet \mathbf{A} = \mathbf{A}$	$\mathbf{A} + \mathbf{A} = \mathbf{A}$					
$\mathbf{A} \bullet (\mathbf{B} \bullet \mathbf{C}) = (\mathbf{A} \bullet \mathbf{B}) \bullet \mathbf{C}$	$\mathbf{A} + (\mathbf{B} + \mathbf{C}) = (\mathbf{A} + \mathbf{B}) + \mathbf{C}$	Associative Laws				
$\overline{\mathbf{A} \bullet \mathbf{B}} = \overline{\mathbf{A}} + \overline{\mathbf{B}}$	$\overline{\mathbf{A} + \mathbf{B}} = \overline{\mathbf{A}} \bullet \overline{\mathbf{B}}$	DeMorgan's Theorem				

Problem

1. Prove A + 1 = 1

2. Prove A + AB = A

3. Prove A + AB = A using perfect induction (complete truth table)

Problem

- The complement of any Boolean expression can be found using DeMorgan's Theorem
 - 1. Find the complement of X + (YZ)

2. Using a truth table, show you really found the complement

GATES

Gates

• Gate

- 1. an electronic circuit that operates on one or more signals producing an output signal
- 2. fundamental building block of ALL digital logic circuits
- Interconnections of these gates allow us to build simple or complicated logical functions

Basic Logic Gates

Name	Graphical Symbol	Algebraic Function	Truth Table
AND	AF	F = A • B or F = AB	<u>A B F</u> 0 0 0 0 1 0 1 0 0 1 1 1
OR	AF	F = A + B	<u>A B F</u> 0 0 0 0 1 1 1 0 1 1 1 1
NOT	AF	$F = \overline{A}$ or $F = A^*$	A F 0 1 1 0
NAND	A	F=AB	<u>A B F</u> 0 0 1 0 1 1 1 0 1 1 1 0
NOR	A	$F = \overline{A + B}$	<u>A B F</u> 0 0 1 0 1 0 1 0 0 1 1 0
XOR		F=A⊕B	A B F 0 0 0 0 1 1 1 0 1 1 1 0

Gate as Transistor

Transistors and Gates

- Interested in how to build logic gates from transistors?
 - Watch this:

https://www.youtube.com/watch?v=NWhk9qGn8qw

Next Time

• Read section 11.3: pp. 370-380