
1

Minimum Spanning Trees

Chapter 23

CS380 Algorithm Design and Analysis

2

Spanning Tree

•  What are the edges you need to keep the
graph connected?
•  If you remove any edge, the graph becomes

disconnected

•  Minimum Spanning Tree
•  minimize the total weight of the edges

CS380 Algorithm Design and Analysis

3

Problem

•  A town has a set of houses and a set of
roads

•  A road connects 2 and only 2 houses

•  A road connecting houses u and v has a
repair cost w(u, v)

•  Goal: Repair enough (and no more) roads
such that
o  Everyone stays connected

o  Total repair cost is minimum
CS380 Algorithm Design and Analysis

4

Minimum Spanning Tree

•  Model as a graph:
o  Undirected graph G = (V, E)

o  Weight w(u, v) on each edge (u, v) in E

o  Find T that is a subset of E such that
§  T connects all vertices, and
§  is minimized

CS380 Algorithm Design and Analysis

∑
∈

=
Tvu

vuwTw
),(

),()(

5

Minimum Spanning Tree

•  A spanning tree whose weight is minimum
over all spanning trees is called a minimum
spanning tree

•  Example

CS380 Algorithm Design and Analysis

a

b

c

d

f

e i

g

h

10

9

12

8 8
2

11

9
5

6 1

3 3

7

6

Growing an MST

•  Properties of an MST

•  Building up a Solution

CS380 Algorithm Design and Analysis

7

Generic MST Algorithm

CS380 Algorithm Design and Analysis

8

Proof via Loop Invariant

•  Initialization

•  Maintenance

•  Termination

CS380 Algorithm Design and Analysis

9

Finding a Safe Edge

•  How do we find safe edges?

•  Looking at the example below, Edge (c,f)
has the lowest weight of any edge in the
graph. Is it safe for A?

CS380 Algorithm Design and Analysis

a

b

c

d

f

e i

g

h

10

9

12

8 8
2

11

9
5

6 1

3 3

7

10

Finding a Safe Edge

•  Intuitively: Let S, a subset of V, be any set of
vertices that includes c but not f (f is in V-S).

•  In any MST, there has to be one edge that
connects S with V-S.

•  Why not choose the edge with the minimum
weight?

CS380 Algorithm Design and Analysis

11

Definitions

•  Let S be a subset of V and A be a subset of
E
o  A cut (S, V-S) is a partition of vertices into

disjoint sets V and S-V

o  Edge (u,v) in E crosses cut (S,V-S) if one
endpoint is in S and the other is in V-S

o  A cut respects A if and only if no edge in A
crosses the cut

o  An edge is a light edge crossing a cut if and
only if its weight is minimum over all edges
crossing the cut

CS380 Algorithm Design and Analysis

12

Theorem

•  Let A be a subset of some MST, (S,V-S) be
a cut that respects A, and (u,v) be a light
edge crossing (S,V-S).

•  Then….

CS380 Algorithm Design and Analysis

13

Generic-MST

•  So, in a generic MST
o  A is a forest containing connected components.

Initially, each component is a single vertex

o  Any safe edge merges two of these components
into one. Each component is a tree

o  Since an MST has exactly |V|-1 edges, the for
loop iterates |V|-1 times. Equivalently, after
adding |V|-1 safe edges, we’re down to just one
component

CS380 Algorithm Design and Analysis

14

Kruskal’s Algorithm

•  G = (V,E) is a connected, undirected,
weighted graph. w:E->R
o  Starts with each vertex being its own component

o  Repeatedly merges two components into one by
choosing the light edge that connects them

o  Scans the set of edges in monotonically
increasing order by weight

o  Uses a disjoint-set data structure to determine
whether an edge connects vertices in different
components

CS380 Algorithm Design and Analysis

15

Kruskal(V,E,w)

CS380 Algorithm Design and Analysis

16

Example

CS380 Algorithm Design and Analysis

a

b

c

d

f

e i

g

h

10

9

12

8 8
2

11

9
5

6 1

3 3

7

17

Prim’s Algorithm

•  Builds one tree, so A is always a tree

•  Starts from an arbitrary “root” r

•  At each step, find a light edge crossing cut
(VA, V-VA), where VA = vertices that A is
incident on. Add this edge to A

CS380 Algorithm Design and Analysis

18

How to Find a Light Edge Quickly

•  Use a priority queue Q:
o  Each object is a vertex in V-VA

o  Key of v is minimum weight of any edge (u,v),
where u is in VA

o  Then the vertex returned by EXTRACT-MIN is v
such that there exists u in VA and (u,v) is a light
edge crossing (VA , V-VA)

o  Key of v is infinity if v is not adjacent to any
vertices in VA

CS380 Algorithm Design and Analysis

19

Prim’s Algorithm

•  The edges of A will form a rooted tree with
root r:
o  r is given as an input to the algorithm, but it can

be any vertex

o  Each vertex knows its parent in the tree by the
attribute π[v] = parent of v. π[v] = NIL if v = r or v
has no parent

CS380 Algorithm Design and Analysis

20

PRIM(G,w,r)

CS380 Algorithm Design and Analysis

21

Example

CS380 Algorithm Design and Analysis

a

b

c

d

f

e i

g

h

10

9

12

8 8
2

11

9
5

6 1

3 3

7

