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Minimum Spanning Trees 

Chapter 23 
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Spanning Tree 

•  What are the edges you need to keep the 
graph connected? 
•  If you remove any edge, the graph becomes 

disconnected 

•  Minimum Spanning Tree 
•  minimize the total weight of the edges 
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Problem 

•  A town has a set of houses and a set of 
roads 

•  A road connects 2 and only 2 houses 

•  A road connecting houses u and v has a 
repair cost w(u, v) 

•  Goal: Repair enough (and no more) roads 
such that 
o  Everyone stays connected 

o  Total repair cost is minimum 
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Minimum Spanning Tree 

•  Model as a graph: 
o  Undirected graph G = (V, E) 

o  Weight w(u, v) on each edge (u, v) in E 

o  Find T that is a subset of E such that 
§  T connects all vertices, and 
§                              is minimized 
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Minimum Spanning Tree 

•  A spanning tree whose weight is minimum 
over all spanning trees is called a minimum 
spanning tree 

•  Example 
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Growing an MST 

•  Properties of an MST 

•  Building up a Solution 

CS380 Algorithm Design and Analysis 



7 

Generic MST Algorithm 
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Proof via Loop Invariant 

•  Initialization 

•  Maintenance 

•  Termination 
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Finding a Safe Edge 

•  How do we find safe edges? 

•  Looking at the example below, Edge (c,f) 
has the lowest weight of any edge in the 
graph. Is it safe for A? 
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Finding a Safe Edge 

•  Intuitively: Let S, a subset of V, be any set of 
vertices that includes c but not f (f is in V-S).  

•  In any MST, there has to be one edge that 
connects S with V-S.  

•  Why not choose the edge with the minimum 
weight? 
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Definitions 

•  Let S be a subset of V and A be a subset of 
E 
o  A cut (S, V-S) is a partition of vertices into 

disjoint sets V and S-V 

o  Edge (u,v) in E crosses cut (S,V-S) if one 
endpoint is in S and the other is in V-S 

o  A cut respects A if and only if no edge in A 
crosses the cut 

o  An edge is a light edge crossing a cut if and 
only if its weight is minimum over all edges 
crossing the cut 
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Theorem 

•  Let A be a subset of some MST, (S,V-S) be 
a cut that respects A, and (u,v) be a light 
edge crossing (S,V-S). 

•  Then…. 
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Generic-MST 

•  So, in a generic MST 
o  A is a forest containing connected components. 

Initially, each component is a single vertex 

o  Any safe edge merges two of these components 
into one. Each component is a tree 

o  Since an MST has exactly |V|-1 edges, the for 
loop iterates |V|-1 times. Equivalently, after 
adding |V|-1 safe edges, we’re down to just one 
component 
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Kruskal’s Algorithm 

•  G = (V,E) is a connected, undirected, 
weighted graph. w:E->R 
o  Starts with each vertex being its own component 

o  Repeatedly merges two components into one by 
choosing the light edge that connects them 

o  Scans the set of edges in monotonically 
increasing order by weight 

o  Uses a disjoint-set data structure to determine 
whether an edge connects vertices in different 
components 
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Kruskal(V,E,w) 
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Example 
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Prim’s Algorithm 

•  Builds one tree, so A is always a tree 

•  Starts from an arbitrary “root” r 

•  At each step, find a light edge crossing cut 
(VA, V-VA), where VA = vertices that A is 
incident on. Add this edge to A 
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How to Find a Light Edge Quickly 

•  Use a priority queue Q: 
o  Each object is a vertex in V-VA 

o  Key of v is minimum weight of any edge (u,v), 
where u is in VA 

o   Then the vertex returned by EXTRACT-MIN is v 
such that there exists u in VA and (u,v) is a light 
edge crossing (VA , V-VA) 

o  Key of v is infinity if v is not adjacent to any 
vertices in VA 
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Prim’s Algorithm 

•  The edges of A will form a rooted tree with 
root r: 
o  r is given as an input to the algorithm, but it can 

be any vertex 

o  Each vertex knows its parent in the tree by the 
attribute π[v] = parent of v. π[v] = NIL if v = r or v 
has no parent 
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PRIM(G,w,r) 
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Example 
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