Edit Distance - Levenshtein

Sequence Alignment -
Needleman & Wunsch

Not in Book

CS380 Algorithm Design and Analysis



EDIT DISTANCE

CS380 Algorithm Design and Analysis



Edit Distance

* Mutation in DNA is evolutionary.

* DNA replication errors cause

o Substitutions
o Insertions

o Deletions

 of nucleotides, leading to “edited” DNA texts

CS380 Algorithm Design and Analysis 3



Edit Distance: Definition

* |Introduced by Vladimir Levenshtein in 1966

» The Edit Distance between two strings is the
minimum number of editing operations
needed to transform one string into another

» Operations are:

o Insertion of a symbol

o Deletion of a symbol

o Substitution of one symbol for another

CS380 Algorithm Design and Analysis 4



Example

« How would you transform:
o X: TGCATAT

* To the string:
o Y: ATCCGAT

CS380 Algorithm Design and Analysis



Edit Distance

 How many insertions, deletions,
substitutions will transform one string into
another?

» Backtracking will give us the steps used to
convert one string to another

CS380 Algorithm Design and Analysis



Recursive Solution

* Let d; = the minimum edit distance of
X1XoX3..X; @nd y,Y,Ys..Y;

dli,jl =+

(

rodli—1,j
min < dli,j —1.
\

i f X; =y, Match.
+1 if X; # y; Deletion from X
+1 if X; # Y Insertion to X

dli—1,j—1]+1 if x; #y; Substitution

CS380 Algorithm Design and Analysis



Backtracking

* No need to keep track of the arrows

» Just know that:
o Match/Substitution: Diagonal
o Insertion: Horizontal (Left)
o Deletion: Vertical (Up)

CS380 Algorithm Design and Analysis



Example

« X=ATCGTT
- Y =AGTTAC
A G T T

1 2 3

4 4o o 4>
O gl b~ WD -~ O

CS380 Algorithm Design and Analysis



Kleinberg, Tardos, Algorithm Design, Pearson Addison Wesley,
2006, p 278

SEQUENCE ALIGNMENT

CS380 Algorithm Design and Analysis

10



Sequence Alignment

» Edit Distance:

o Gave the minimum number of changes to
convert one string into another

» Sequence Alignment

o Maximizes the similarity by giving weights to
types of differences

CS380 Algorithm Design and Analysis 11



Sequence Alignment

* Needleman-Wunsch
» Similarity based on gaps and mismatches

» Generalized form of Levenshtein

o additional parameters:
= gap penalty, 0
- mismatch cost(a,,;a,,=0)

Yy ! X, X

CS380 Algorithm Design and Analysis

12



Recurrence

» Two strings x,...X, and y,...y,

 In an optimal alignment, M, at least one of
the following is true:
o (X, Yp)iSin M
o X, IS not matched

o Y, IS not matched

CS380 Algorithm Design and Analysis

13



Recurrence

» So, foriandj>0

opt(i,j)= min[a,;,; + opt(i-1,j-1),
O + opt(i-1,]), // x is not matched
O + opt(i,j-1) ] /7y, is not matched

CS380 Algorithm Design and Analysis 14



Example

* Assume that:
00=2
oa(v,v)=1

c)=1

o a (c,
oa(v,c)=3

* What is the cost of aligning the strings:
o Mmean

o Name

CS380 Algorithm Design and Analysis

15



SPACE-EFFICIENT
SEQUENCE ALIGNMENT

CS380 Algorithm Design and Analysis

16



Sequence Alignment Space Usage

* O(n?) is pretty low space usage

» However, for a 10GB genome, you'd need a
huge amount of memory

« Can we use less?

o Hirschberg’'s algorithm
o 1975

CS380 Algorithm Design and Analysis 17



Linear Space for Alignment Scores

* |f you are only interested in the cost of the
alignment, you need to only use O(n) space

« How?

o When filling the entries, we only ever look at the
current and previous cols

o Only keep those two in memory

CS380 Algorithm Design and Analysis 18



Space-Efficient-Alignment (X, Y)

Space-Efficient-Alignment (X,Y)
Array B[0...m,0...1]
Initialize B[i,0]=1i5 for each i (just as in column 0 of A)
For j=1,..., n
B[0,1]=j8 (since this corresponds to entry A[0, )]

B(i, 1]=minla,, + B[i —1,0],
§+B[i—-1,1], §+ Bli,0]]
Endfor
Move column 1 of B to column 0 to make room for next iteration:
Update Bli, 0]=B[i, 1] for each 1
Endfor

CS380 Algorithm Design and Analysis 19



Actual Alignment

- How do we recover the actual alignment?

Do we need the entire matrix?

CS380 Algorithm Design and Analysis

20



Divide-and-Conquer-Alignment (X,Y)

Divide-and-Conquer—Alignment (X,Y)
Let m be the number of symbols in X
Let n be the number of symbols in Y

If m<2 or n<2 then
Compute optimal alignment using Alignment(X,Y)

Call Space-Efficient-Alignment(X,Y[1:n/2])

Call Backward-Space-Efficient-Alignment (X,Y[n/2+1:n])
Let g be the index minimizing f(q, n/2) +g(q, n/2)

Add (g, n/2) to global list P
Divide-and-Conquer-Alignment (X[1:q], Y[l : n/2))
Divide-and-Conquer-Alignment (X[q+1:n],Y[n/2 + 1 :n])
Return P

CS380 Algorithm Design and Analysis 21



