Longest Common Subsequence (LCS)

Chapter 15

CS380 Algorithm Design and Analysis

Subsequence

- A subsequence of a string S, is a set of characters that appear in left-to-right order, but not necessarily consecutively
- Example: ACTTGCG
- Subsequences:
 - o ACT
 - o ATTC
 - ACTTGC
- TTA is not a subsequence!

Common Subsequence

- A common subsequence of two strings is a subsequence that appears in *both* strings
- Example:
 - ACTTGCG and AGTCTCG
- Common subsequences:
 - o ATT
 - AGCG

Longest Common Subsequence

- A longest common subsequence is a common subsequence of maximal length
- Example:
 - ACTTGCG and AGTCTCG
- LCS:
 - ACTCG
 - ATTCG

Longest Common Subsequence

 Problem: Let x₁x₂...x_m and y₁y₂...y_n be two sequences over some alphabet.

• We assume they are strings of characters

 Find a longest common subsequence (LCS) of x₁x₂...x_m and y₁y₂...y_n

Example

- $x_1x_2x_3x_4x_5x_6x_7x_8 = b a c b f f c b$
- $y_1y_2y_3y_4y_5y_6y_7y_8y_9 = d a b e a b f b c$

Longest Common Subsequence is:

A subsequence is a set of characters that appear in left- to-right order, but not necessarily consecutively.

Naïve Algorithm

Dynamic Programming

 LCS can be solved using dynamic programming

- 1. Characterize the structure of an optimal solution
- 2. Recursively define the value of an optimal solution
- 3. Compute the value of an optimal solution bottom-up
- 4. Construct an optimal solution from the computed information

Step 1

- Characterizing a longest subsequence
- Optimal substructure: If z = z₁z₂...z_p is a LCS of x₁x₂...x_m and y₁y₂...y_n, then at least one of these most hold
 - $x_m = y_n$, and $z_1 z_2 ... z_{p-1}$ is an LCS of $x_1 x_2 ... x_{m-1}$ and $y_1 y_2 ... y_{n-1}$,
 - $x_m = y_n$, and $z_1 z_2 \dots z_p$ is an LCS of $x_1 x_2 \dots x_{m-1}$ and $y_1 y_2 \dots y_n$,
 - $x_m != y_n$, and $z_1 z_2 ... z_p$ is an LCS of $x_1 x_2 ... x_m$ and $y_1 y_2 ... y_{n-1}$.

Step 2: Recursive Solution

Let c_{ij} = length of LCS of $x_1x_2...x_i$ and $y = y_1y_2...y_j$.

$$c[i,j] = \begin{cases} 0 & \text{if } i = 0 \text{ or } j = 0, \\ 1 + c[i-1,j-1] & \text{if } x_i = y_j, \\ \max(c[i-1,j], c[i,j-1]) & \text{if } x_i \neq y_j. \end{cases}$$
$$b[i,j] = \begin{cases} "\uparrow_" & \text{if } x_i = y_j, \\ "\uparrow" & \text{if } x_i \neq y_j \text{ and } c[i-1,j] \ge c[i,j-1], \\ "\leftarrow" & \text{if } x_i \neq y_j \text{ and } c[i-1,j] \le c[i,j-1]. \end{cases}$$

We compute the c[i,j] and b[i,j] in order of increasing i+j, or alternatively in order of increasing *i*, and for a fixed *i*, in order of increasing *j*.

Steps 3 & 4

LCS-LENGTH(X, Y)1 m = X.length2 n = Y.length3 let $b[1 \dots m, 1 \dots n]$ and $c[0 \dots m, 0 \dots n]$ be new tables 4 **for** i = 1 **to** m 5 c[i, 0] = 0for j = 0 to n6 c[0, j] = 07 for i = 1 to m 8 9 for j = 1 to n10 if $x_i = y_i$ c[i, j] = c[i - 1, j - 1] + 111 $b[i, j] = " \ "$ 12 **elseif** $c[i - 1, j] \ge c[i, j - 1]$ 13 c[i, j] = c[i - 1, j]14 15 $b[i, j] = ``\uparrow"$ 16 else c[i, j] = c[i, j-1] $b[i, j] = " \leftarrow "$ 17 18 **return** c and b

Example

- $x_1x_2x_3x_4x_5x_6x_7x_8 = b a c b f f c b$
- $y_1y_2y_3y_4y_5y_6y_7y_8y_9 = d a b e a b f b c$

Example

	0	1 d	2 a	3 b	4 e	5 a	6 b	7 f	8 b	9 c
0										
1 b										
2 a										
3 c										
4 b										
5 f										
6 f										
7 c										
8 b										

Printing the LCS

PRINT-LCS(b, X, i, j)**if** i == 0 or j == 02 return 3 **if** $b[i, j] == " \ "$ PRINT-LCS(b, X, i - 1, j - 1)4 5 print x_i 6 elseif $b[i, j] == ``\uparrow"$ 7 PRINT-LCS(b, X, i - 1, j)else PRINT-LCS(b, X, i, j - 1)8

Another Example

- What is the LCS in:
 o epidemiologist
 - o refrigeration