Linear Sorting

Chapter 8

So far...

- Introduced sorting algorithms that sort in O(nlgn)
- Merge sort: worst case
- Heapsort: worst case
- Quicksort: average case
- Lower bound on these algorithms is Ω (nlgn)

Decision Tree

-We can show this lower bound using decision trees

Comparison Sorts

- All these algorithms share an interesting property:
- The sorted order they determine is based only on comparison between the elements
- Comparison Sorts!

Counting Sort

- Depends on a key assumption:
onumbers to be sorted are integers in \{0, 1, ... k $\}$
- Input: A[1..n]
- Output: B[1..n], sorted. B is assumed to be already allocated and is given as a parameter
- Auxiliary storage: C[0..k]

COUNTING-SORT(A, B, k)

1 let $C[0 \ldots k]$ be a new array
2 for $i=0$ to k
$3 \quad C[i]=0$
4 for $j=1$ to A.length
$5 \quad C[A[j]]=C[A[j]]+1$
6 // $C[i]$ now contains the number of elements equal to i.
7 for $i=1$ to k
$8 \quad C[i]=C[i]+C[i-1]$
9 // $C[i]$ now contains the number of elements less than or equal to i.
10 for $j=$ A.length downto 1
11
$B[C[A[j]]]=A[j]$
$12 \quad C[A[j]]=C[A[j]]-1$

Example

$$
2{ }_{1}, 51,3_{1}, 0_{1}, 22,3_{2}, 0_{2}, 3_{3}
$$

Analysis

- Is counting sort stable?
-What does stable mean?
Analysis:
- How big of k is practical?

Your Turn

- $A:<6,0,2,0,1,3,4,6,1,3,2>$

Radix Sort

- How IBM made its money. Punch card readers for census tabulation in early 1900's. Card sorters, worked on one column at a time. It's the algorithm for using the machine that extends the technique to multi-column sorting. The human operator was part of the algorithm!
- We're going to sort d digits

RADIX-SORT(A, d)

RADIX-SORT (A, d)
1 for $i=1$ to d
2 use a stable sort to sort array A on digit i

	one's place	ten's place	100 s place
329			
457			
657			
839			
436			

Bucket Sort

Assumption: input is generated by a random process that distributes elements uniformly over $[0,1$)

Idea:

Bucket Sort

- Input: A[1..n], where for all i
- Auxiliary array: $\mathrm{B}[0 . . \mathrm{n}-1]$ of linked lists, each list initially empty.

BUCKET-SORT(A)

Bucket-Sort (A)
$1 \quad n=$ A.length
2 let $B[0 . . n-1]$ be a new array
3 for $i=0$ to $n-1$
4 make $B[i]$ an empty list
5 for $i=1$ to n
$6 \quad$ insert $A[i]$ into list $B[\lfloor n A[i]\rfloor]$
7 for $i=0$ to $n-1$
sort list $B[i]$ with insertion sort
9 concatenate the lists $B[0], B[1], \ldots, B[n-1]$ together in order

Example

A:<.78, .17, .39, .26, .72, .94, .21, . 12, .23, .68>

