Linear Sorting

Chapter 8

CS380 Algorithm Design and Analysis

So far...

* Introduced sorting algorithms that sort in
O(nlgn)

* Merge sort: worst case

» Heapsort: worst case

 Quicksort: average case

* Lower bound on these algorithms is Q(nign)

Decision Tree

* We can show this lower bound using decision
trees

Comparison Sorts

* All these algorithms share an interesting
property:

* The sorted order they determine is based only on
comparison between the elements

« Comparison Sorts!

Counting Sort

* Depends on a key assumption:

onumbers to be sorted are integers in
{0, 1, ..., k}

Input: A[l1..n]

- Output: B[1..n], sorted. B is assumed
to be already allocated and is given as a
parameter

- Auxiliary storage: C[0..k]

CS380 Algorithm Design and Analysis g

COUNTING-SORT(A, B, k)

let C[0..k] be a new array
fori =0tok
Cli] =0
for j = 1to A.length
ClA[j]] = ClA[j]] +1
// Ci] now contains the number of elements equal to i .
fori = 1tok
Cli] =Cli]+ C[i —1]
// C[i] now contains the number of elements less than or equal to i .
for j = A.length downto 1
11 B[C[A[j]]] = Alj]
ClA[j]l = ClA[j]] -1

O 00 9 ON U & W IN =

ek
-

(U
(\®)

Example

¢ 21, 51, 31, 01, 22, 32, 02, 33

Analysis

- Is counting sort stable?
oWhat does stable mean?

- Analysis:

- How big of k is practical?

Your Turn

- A:<6,0,2,0,1,3,4,6,1, 3, 2>

Radix Sort

- How IBM made its money. Punch card
readers for census tabulation in early
1900’s. Card sorters, worked on one
column at a time. It's the algorithm
for using the machine that extends
the technique to multi-column sorting.
The human operator was part of the
algorithm!

» We're going to sort d digits

10

RADIX-SORT(A, d)

RADIX-SORT(A, d)

1 fori =1tod
2 use a stable sort to sort array A on digit i

11

one's place | ten's place | 100s

place
329
457
657
839

436

19

Bucket Sort

« Assumption: input is generated by a
random process that distributes
elements uniformly over [0,1)

- Idea:

13

Bucket Sort

- Input: A[1l..n], where for all i

« Auxiliary array: B[0..n-1] of linked
lists, each list initially empty.

14

BUCKET-SORT(A)

BUCKET-SORT(A)

n = A.length
let B[0..n — 1] be a new array
fori =0ton —1
make B[i] an empty list
fori = 1ton
insert A[i] into list B[|nAli]]]
fori =0ton —1
sort list B[i] with insertion sort
concatenate the lists B[0], B[1], ..., B[n — 1] together in order

O 0 1 ON L B W =

15

Example

- A:<.78, .17, .39, .26, .72, .94, .21, .
12, .23, .68>

16

