
1

Linear Sorting

Chapter 8

CS380 Algorithm Design and Analysis

2

So far…

• Introduced sorting algorithms that sort in
O(nlgn)

• Merge sort: worst case
• Heapsort: worst case
• Quicksort: average case

• Lower bound on these algorithms is Ω(nlgn)

3

Decision Tree

• We can show this lower bound using decision
trees

4

Comparison Sorts

• All these algorithms share an interesting
property:

• The sorted order they determine is based only on
comparison between the elements

• Comparison Sorts!

5

Counting Sort

• Depends on a key assumption:

o numbers to be sorted are integers in
{0, 1, ..., k}

• Input: A[1..n]

• Output: B[1..n], sorted. B is assumed
to be already allocated and is given as a
parameter

• Auxiliary storage: C[0..k]

CS380 Algorithm Design and Analysis

6

COUNTING-SORT(A, B, k)

7

Example

•  21, 51, 31, 01, 22, 32, 02, 33

8

Analysis

•  Is counting sort stable?
o What does stable mean?

•  Analysis:

•  How big of k is practical?

9

Your Turn

•  A: <6, 0, 2, 0, 1, 3, 4, 6, 1, 3, 2>

10

Radix Sort

•  How IBM made its money. Punch card
readers for census tabulation in early
1900’s. Card sorters, worked on one
column at a time. It’s the algorithm
for using the machine that extends
the technique to multi-column sorting.
The human operator was part of the
algorithm!

•  We’re going to sort d digits

11

RADIX-SORT(A, d)

12

one's place ten's place 100s
place

329
457

657

839

436

13

Bucket Sort

•  Assumption: input is generated by a
random process that distributes
elements uniformly over [0,1)

•  Idea:

14

Bucket Sort

•  Input: A[1..n], where for all i

•  Auxiliary array: B[0..n-1] of linked
lists, each list initially empty.

15

BUCKET-SORT(A)

16

Example

•  A:<.78, .17, .39, .26, .72, .94, .21, .
12, .23, .68>

