Quicksort

Chapter 7

Sorting

- What's the running time for:
 - Insertion Sort
 - Merge Sort
 - Heapsort
- Which of these algorithms sort in place?

Quicksort

- The Basic version of quicksort was invented by C. A. R. Hoare in 1960
- Divide and Conquer algorithm
- In practice, it is the fastest in-place sorting algorithm

Divide and Conquer

 Divide: Partition the array into two subarrays around a pivot x such that elements to the left are <= x and elements to the right are >= x

- Conquer: Recursively sort the two subarrays
- Combine: Trivial!

Good
Key? Partitioning
Subroutine!

Quicksort Pseudocode

QUICKSORT(A, p, r)

```
Quicksort(A, p, r) // A:Array; p,r: integer indexes

1  if p < r
2   q = Partition(A, p, r);

3   Quicksort(A, p, q-1);

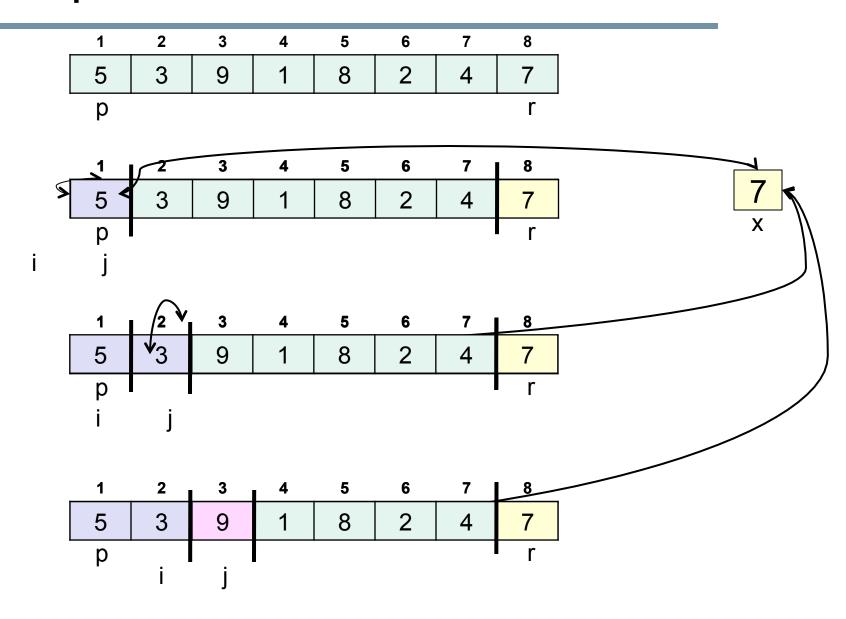
4   Quicksort(A, q+1, r);</pre>
```

What's the call to sort the entire array?

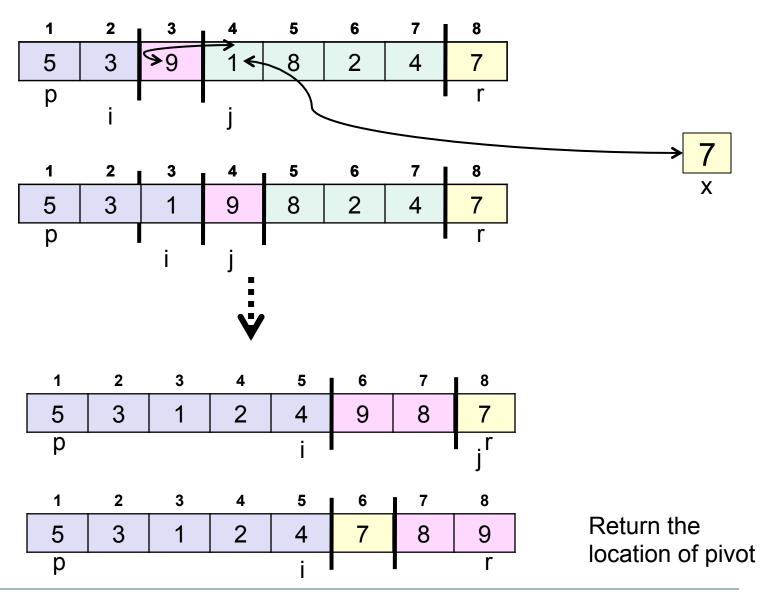
Partitioning the Array

	Partition(A,p,r) // A:Array; p,r: integer indexes
1	x = A[r]
2	i = p - 1
3	for j = p to r-1
4	if A[j] <= x
5	i = i + 1
6	swap(A[i], A[j])
7	swap (A[i+1], A[r])
8	return i+1

Example

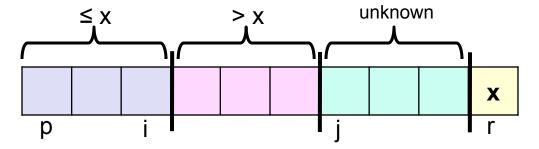


Example



Correctness of Partition

 During the execution of PARTITION there are four distinct sections of the array:



Exercise - Partition the Following

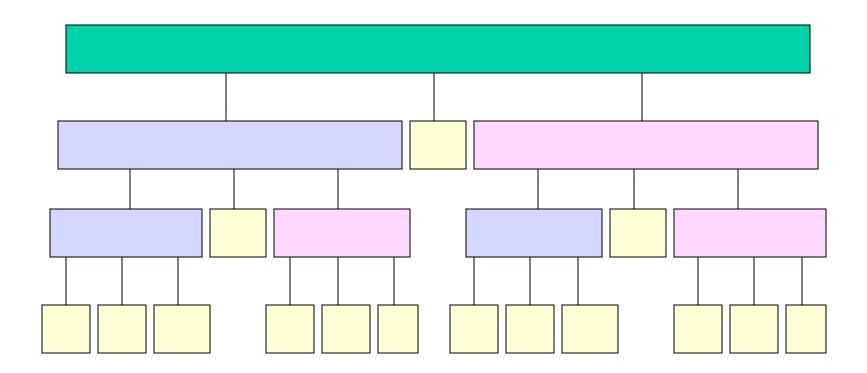
44	75	23	13	55	12	61	77	33	11
44	13	23	43	33	12	04	11	33	41

Analysis of Partition

What is the running time of PARTITION?

	Partition(A,p,r) // A:Array; p,r: integer indexes
1	x = A[r]
2	i = p - 1
3	for j = p to r-1
4	if A[j] <= x
5	i = i + 1
6	swap(A[i], A[j])
7	swap (A[i+1], A[r])
8	return i+1

Quicksort in Action



Exercise

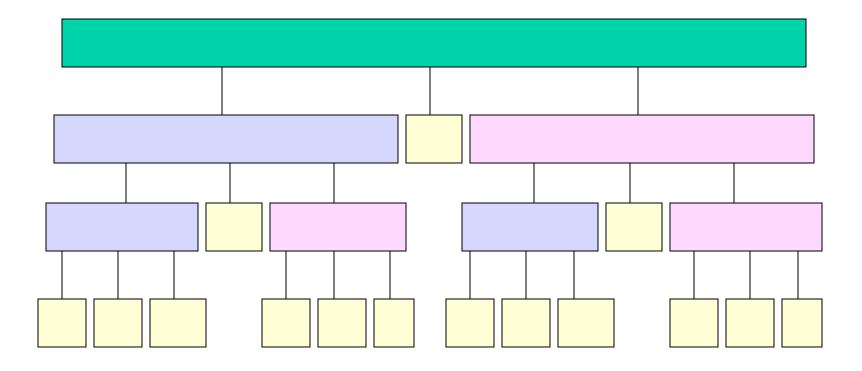
Sort the following array using quicksort

3 4 2 5 1

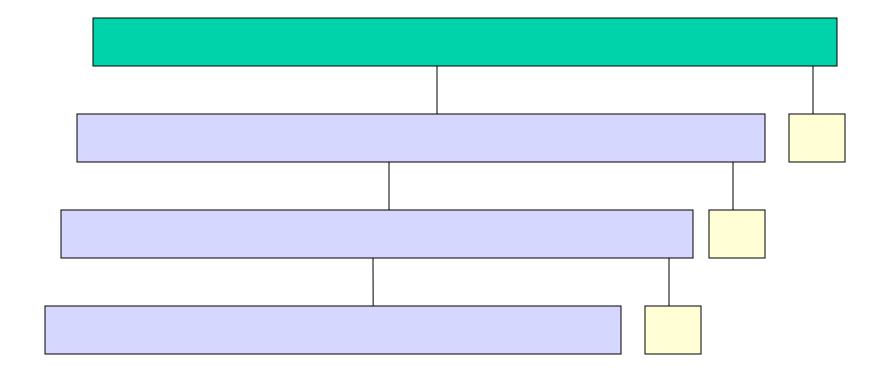
Performance of Quicksort

- What does the performance of quicksort depend on?
- What would give us the best case?

Best Case of Quicksort



Worst Case of Quick Sort



Quicksort Analysis

- To justify its name, Quicksort had better be good in the average case.
- Showing this requires some intricate analysis.

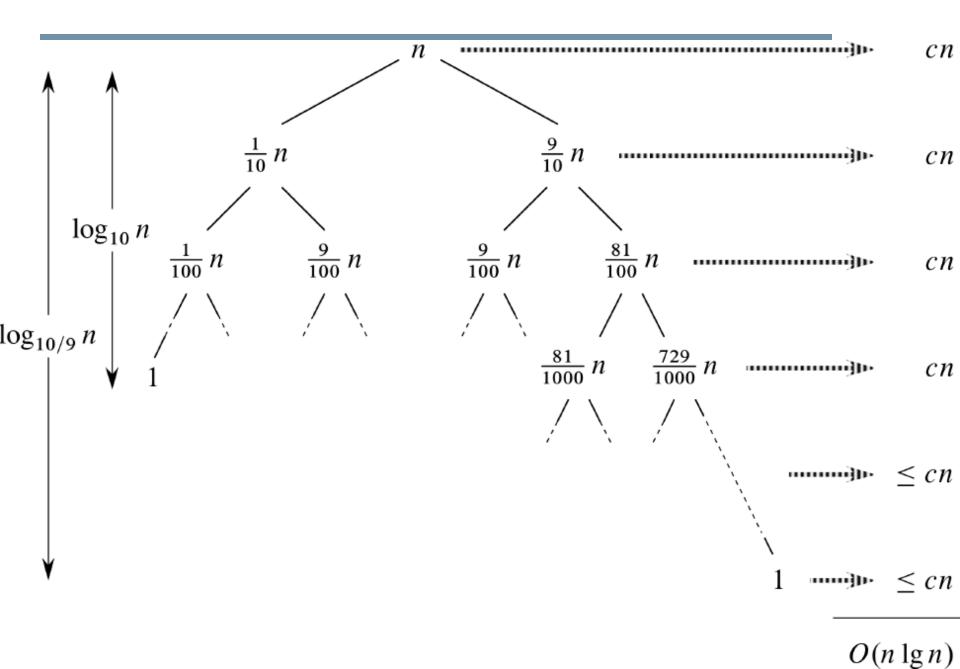
Average Case Analysis

- Let's look at this by intuition
- Running quicksort on a random array is likely to produce a mix of balanced and unbalanced partitions
- It has been shown that 80% of the time partition produces good splits and 20% of the time it produces bad splits

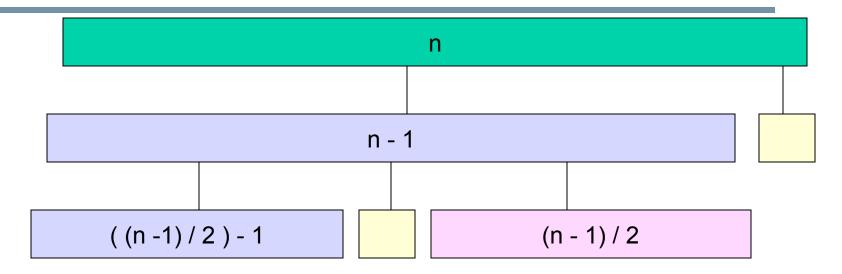
Assume 9-1 split, p 176

- Assume each partition is a 9 to 1 split.
 - constant proportionality
- What is the recurrence?

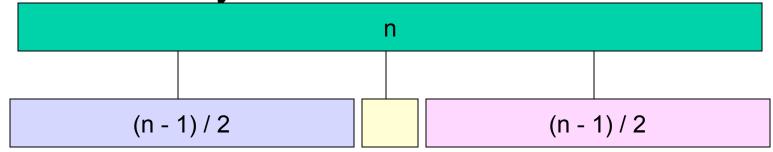
Fig 7.4 What does the recursion tree look like (9-1 split)?



Average Case Analysis



This is really no different than:



 Thus, the O(n -1) of the bad split can be absorbed into the O(n) of the good split

Average Case Analysis

- The running time of quicksort when alternating good and bad splits is like the running time for good splits alone
- O(n lg n) but with a slightly larger constant hidden by the O-notation

Random Partition, p 179

	Randomized-Partition(A, p, r)			
1	i = RANDOM(p,r)			
2	swap (A[r], A[i])			
3	return PARTITION(A, p, r)			

Hoare Partition, p 185

	HoareParition(A,p,r)
1	x = A[p]
2	i = p -1
3	j = r + 1
4	while TRUE
5	do
6	j=j-1
7	while(A[j] > x)
8	do
9	i = i+1
10	while($A[i] < x$)
11	if (i < j)
12	swap (A[i], A[j])
13	else return j