Quicksort

Chapter 7

CS380 Algorithm Design and Analysis

Sorting

- What’ s the running time for:
o Insertion Sort
o Merge Sort

o Heapsort

* Which of these algorithms sort in place?

CS380 Algorithm Design and Analysis

Quicksort

« The Basic version of quicksort was invented
by C. A. R. Hoare in 1960

 Divide and Conquer algorithm

* |n practice, it is the fastest in-place sorting
algorithm

CS380 Algorithm Design and Analysis 3

Divide and Conquer

» Divide: Partition the array into two subarrays
around a pivot x such that elements to the
left are <= x and elements to the right are >=
X

<X X >X

» Conquer: Recursively sort the two subarrays

) il
Combine: Trivial! Good

Key? Partitioning
Subroutine!

CS380 Algorithm Design and Analysis 4

Quicksort Pseudocode

QUICKSORT(A, p, r)

Quicksort(A, p, r) // A:Array; p,r: integer indexes

ifp<r

q = Partition(A, p, r);

Quicksort (A, p, gq-1);

B W

Quicksort(A, g+l, r);

» What' s the call to sort the entire array?

CS380 Algorithm Design and Analysis

Partitioning the Array

Partition(A,p,r) // A:Array; p,r: integer indexes

x = Alr]

i=p-1

for j = p to r-1

if A[j] <= x

i=1i+1

swap (A[i], A[]])

swap (A[i+1], Alr])

O dJ|on O bW N K

return i+l

CS380 Algorithm Design and Analysis

1 2 3 4 5 6 7 8
5 (3|9 |18 |2]|4]|7
P r
Az 3 4 5 6 7 8
543 |9 |1 |8|2|4]7
p | r
]
1 ﬁ\"l3 4 5 6 7 8
5*3'9 118 |2]4a]7
p r
]
1 2 , 3 4 5 6 7 8
5 3|9 1 (8|2 |4]7
P r

CS380 Algorithm Design and Analysis

1 | 3 4 2 5 6 7 8
5 |§9 1«18 | 2 | 4 | 7
P _ r
J
1 3 4 5 6 7 8 ” Z
S 1 9 |8 | 2| 4|7
p r
L]
v
1 3 4 5 6 7 8
S 1 2 | 419 |87
P i j r
1 3 4 5 6 7 8
5 1 21 4| 718 | 9 Return the
D i r location of pivot

CS380 Algorithm Design and Analysis

8

Correctness of Partition

 During the execution of PARTITION there
are four distinct sections of the array:

<X > X unknown

A A A
[1yl \1 1

CS380 Algorithm Design and Analysis

Exercise - Partition the Following

44 | 75 | 23 | 43 | 55 | 12 | 64 | 77 | 33 | 41

CS380 Algorithm Design and Analysis

Analysis of Partition

* What is the running time of PARTITION?

Partition(A,p,r) // A:Array; p,r: integer indexes

x = Alr]

i=p-1

for j = p to r-1

if A[j] <= x

i=1i+1

swap (A[i], A[]])

swap (A[i+1], Alr])

O dJ|on O bW N R

return i+l

CS380 Algorithm Design and Analysis

Quicksort in Action

F

CS380 Algorithm Design and Analysis

12

Exercise

 Sort the following array using quicksort

3 4 2 5 1

2/23/15 CS380 Algorithm Design and Analysis

Performance of Quicksort

- What does the performance of quicksort
depend on?

» What would give us the best case?

CS380 Algorithm Design and Analysis

14

Best Case of Quicksort

F

CS380 Algorithm Design and Analysis

15

Worst Case of Quick Sort

*

CS380 Algorithm Design and Analysis

16

Quicksort Analysis

» To justify its name, Quicksort had better be
good in the average case.

» Showing this requires some intricate
analysis.

CS380 Algorithm Design and Analysis 17

Average Case Analysis

» Let’s look at this by intuition

» Running quicksort on a random array is
likely to produce a mix of balanced and
unbalanced partitions

* |t has been shown that 80% of the time
partition produces good splits and 20% of
the time it produces bad splits

CS380 Algorithm Design and Analysis

18

Assume 9-1 split, p 176

» Assume each partition is a 9 to 1 split.

o constant proportionality

« What is the recurrence?

CS380 Algorithm Design and Analysis

19

Fig 7.4

log

lOg10/9 n

>

What does the recursion tree look like (9-1 split)?

/ n Kﬂ"“"llllllllllllllIIIIIIIIIIIIllllllllllllllllllllil.' C"l
1 9 |
10 n 10 J1 ressssssssssssssssssssssssansnnnnnnns in- Cn
1 9 9 81
IOOn Too 1 Too /! 100 N ssesssssssssssssssssans - Cn
81 729
1000 n 1000 n lllllllllllllllll ".. Crl
/N /N
nuuu-ii... S C’*l
\
1 ------- i S cn

O(nlgn)

Average Case Analysis

ﬁ

n -

1

((nN-1)/2)-1

(n-1)/2

 Thisis realli no different than:

(n-1)/2

(n-1)/2

* Thus, the O(n -1) of the bad split can be
absorbed into the O(n) of the good split

CS380 Algorithm Design and Analysis 21

Average Case Analysis

» The running time of quicksort when
alternating good and bad splits is like the
running time for good splits alone

* O(n Ig n) but with a slightly larger constant
hidden by the O-notation

CS380 Algorithm Design and Analysis 22

Random Partition, p 179

Randomized-Partition(A, p, r)

i = RANDOM(p, r)

swap (A[r], A[i])

return PARTITION (A, p, r)

23

Hoare Partition, p 185

HoareParition(A,p,r)

x = Alp]

i =p-1

j=r+1

while TRUE

do

J=I-1

while(A[j] > x)

do

© 00 N OoO O W N -

| = i+1

RN
o

while(A[i] < x)

—
—_—

if (i<j)

RN
N

swap (A[i], Afj])

RN
w

else return j

24

