Quicksort

Chapter 7

Sorting

- What's the running time for:
- Insertion Sort
- Merge Sort
- Heapsort
- Which of these algorithms sort in place?

Quicksort

- The Basic version of quicksort was invented by C. A. R. Hoare in 1960
- Divide and Conquer algorithm
- In practice, it is the fastest in-place sorting algorithm

Divide and Conquer

- Divide: Partition the array into two subarrays around a pivot x such that elements to the left are <= x and elements to the right are >= x

$$
\begin{array}{l|l|l}
\hline \leq x & x & \geq x \\
\hline
\end{array}
$$

- Conquer: Recursively sort the two subarrays
- Combine: Trivial!

Good
Key? Partitioning Subroutine!

Quicksort Pseudocode

QUICKSORT(A, p, r)

	Quicksort(A, p, r) // A:Array; p,r: integer indexes
1	if $p<r$
2	$q=\operatorname{Partition}(A, p, r) ;$
3	Quicksort(A, p, q-1) ;
4	Quicksort(A, q+1, r) ;

- What's the call to sort the entire array?

Partitioning the Array

	Partition (A,p,r) // A:Array; p,r: integer indexes
1	$\mathbf{x}=\mathrm{A}[\mathrm{r}]$
2	i $=\mathrm{p}-1$
3	for $\mathrm{j}=\mathrm{p}$ to $\mathrm{r}-1$
4	if $\mathrm{A}[\mathrm{j}]<=\mathbf{x}$
5	$\mathrm{i}=\mathrm{i}+1$
6	$\operatorname{swap}(\mathrm{~A}[\mathrm{i}], \mathrm{A}[\mathrm{j}])$
7	swap (A[i+1], A[r])
8	return $i+1$

Example

Example

Correctness of Partition

- During the execution of PARTITION there are four distinct sections of the array:

Exercise - Partition the Following

44	75	23	43	55	12	64	77	33	41

Analysis of Partition

- What is the running time of PARTITION?

	Partition (A, P, r) // A:Array; p, r : integer indexes
1	$\mathbf{x}=\mathrm{A}$ [r]
2	$\mathrm{i}=\mathrm{p}-1$
3	for $j=p$ to $r-1$
4	if $\mathrm{A}[\mathrm{j}]<=\mathrm{x}$
5	$i=1+1$
6	swap (A[i], A[j])
7	swap (A[i+1], A[r])
8	return i+1

Quicksort in Action

Exercise

- Sort the following array using quicksort

Performance of Quicksort

- What does the performance of quicksort depend on?
- What would give us the best case?

Best Case of Quicksort

Worst Case of Quick Sort

Quicksort Analysis

- To justify its name, Quicksort had better be good in the average case.
- Showing this requires some intricate analysis.

Average Case Analysis

- Let's look at this by intuition
- Running quicksort on a random array is likely to produce a mix of balanced and unbalanced partitions
- It has been shown that 80% of the time partition produces good splits and 20\% of the time it produces bad splits

Assume 9-1 split, p 176

- Assume each partition is a 9 to 1 split. - constant proportionality
- What is the recurrence?

Fig 7.4

What does the recursion tree look like (9-1 split)?

$O(n \lg n)$

Average Case Analysis

- This is really no different than:

- Thus, the $O(n-1)$ of the bad split can be absorbed into the $O(n)$ of the good split

Average Case Analysis

- The running time of quicksort when alternating good and bad splits is like the running time for good splits alone
- $\mathrm{O}(\mathrm{n} \lg \mathrm{n})$ but with a slightly larger constant hidden by the O-notation

Random Partition, p 179

	Randomized-Partition (A, p, r)
1	$i=\operatorname{RANDOM}(p, r)$
2	swap (A[r], A[i])
3	return PARTITION(A, $p, r)$

Hoare Partition, p 185

	HoareParition(A,p,r)
1	$x=A[p]$
2	$\mathrm{i}=\mathrm{p}-1$
3	$\mathrm{j}=\mathrm{r}+1$
4	while TRUE
5	do
6	$\mathrm{j}=\mathrm{j}-1$
7	while(A[j] > x)
8	do
9	i = i+1
10	while $(A[i]<x)$
11	if $(\mathrm{i}<\mathrm{j})$
12	swap $(A[i], A[j])$
13	else return j

