Quicksort

Chapter 7
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Sorting

- What’ s the running time for:
o Insertion Sort
o Merge Sort

o Heapsort

* Which of these algorithms sort in place?
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Quicksort

« The Basic version of quicksort was invented
by C. A. R. Hoare in 1960

 Divide and Conquer algorithm

* |n practice, it is the fastest in-place sorting
algorithm
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Divide and Conquer

» Divide: Partition the array into two subarrays
around a pivot x such that elements to the
left are <= x and elements to the right are >=
X

<X X >X

» Conquer: Recursively sort the two subarrays

) il
Combine: Trivial! Good

Key? Partitioning
Subroutine!
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Quicksort Pseudocode

QUICKSORT(A, p, r)

Quicksort(A, p, r) // A:Array; p,r: integer indexes

ifp<r

q = Partition(A, p, r);

Quicksort (A, p, gq-1);

B W

Quicksort(A, g+l, r);

» What' s the call to sort the entire array?
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Partitioning the Array

Partition(A,p,r) // A:Array; p,r: integer indexes

x = Alr]

i=p-1

for j = p to r-1

if A[j] <= x

i=1i+1

swap (A[i], A[]])

swap (A[i+1], Alr])

O dJ|on O bW N K

return i+l
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Correctness of Partition

 During the execution of PARTITION there
are four distinct sections of the array:

<X > X unknown

A A A
[ 1yl \1 1
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Exercise - Partition the Following

44 | 75 | 23 | 43 | 55 | 12 | 64 | 77 | 33 | 41
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Analysis of Partition

* What is the running time of PARTITION?

Partition(A,p,r) // A:Array; p,r: integer indexes

x = Alr]

i=p-1

for j = p to r-1

if A[j] <= x

i=1i+1

swap (A[i], A[]])

swap (A[i+1], Alr])

O dJ|on O bW N R

return i+l
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Quicksort in Action

F
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Exercise

 Sort the following array using quicksort

3 4 2 5 1
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Performance of Quicksort

- What does the performance of quicksort
depend on?

» What would give us the best case?
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Best Case of Quicksort

F
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Worst Case of Quick Sort

*
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Quicksort Analysis

» To justify its name, Quicksort had better be
good in the average case.

» Showing this requires some intricate
analysis.
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Average Case Analysis

» Let’s look at this by intuition

» Running quicksort on a random array is
likely to produce a mix of balanced and
unbalanced partitions

* |t has been shown that 80% of the time
partition produces good splits and 20% of
the time it produces bad splits
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Assume 9-1 split, p 176

» Assume each partition is a 9 to 1 split.

o constant proportionality

« What is the recurrence?

CS380 Algorithm Design and Analysis

19



Fig 7.4
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What does the recursion tree look like (9-1 split)?
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Average Case Analysis

ﬁ

n -

1

((nN-1)/2)-1

(n-1)/2

 Thisis realli no different than:

(n-1)/2

(n-1)/2

* Thus, the O(n -1) of the bad split can be
absorbed into the O(n) of the good split
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Average Case Analysis

» The running time of quicksort when
alternating good and bad splits is like the
running time for good splits alone

* O(n Ig n) but with a slightly larger constant
hidden by the O-notation
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Random Partition, p 179

Randomized-Partition(A, p, r)

i = RANDOM(p, r)

swap (A[r], A[i])

return PARTITION (A, p, r)
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Hoare Partition, p 185

HoareParition(A,p,r)

x = Alp]

i =p-1

j=r+1

while TRUE

do

J=I-1

while(A[j] > x)

do

© 00 N OoO O W N -

| = i+1

RN
o

while( A[i] < x)

—
—_—

if (i<j)

RN
N

swap (A[i], Afj])

RN
w

else return j
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