
Recurrence Relations – Running
Time for Recursive Functions

Gnome Sort - trivia

http://www.portlandoctopus.com/top-5-garden-gnomes/

Divide and Conquer Algorithms

•  Analysis of divide and conquer algorithms
requires knowledge of:
•  Mathematical Induction

•  Substitution Method

•  Recurrences

class Tree

{

public:

 // returns true if t represents a binary
// search tree containing no duplicate values;
bool IsBST();

// return true if & only if all values in the tree are
// less than val. Running time for next 2 functions is n

 bool isLessThan(int val);
// see above
 bool isGreaterThan(int val);

private:
int mInfo;
Tree * mpsLeft;
Tree * mpsRight;

};

Thank you Owen Astrachan

 // returns true if t represents a binary
// search tree containing no duplicate values;

bool IsBST()

{
bool bLeftIsTree = true, bRightIsTree = true;
bool bLessThan = true, bGreaterThan = true;
if(t->left)
{
 bLeftIsTree = t->left->IsBST();
 bLessThan = t->left->isLessThan(t->info);

 }
if(t->right)
{
 bRightIsTree = t->right->IsBST();
 bGreaterThan = t->right->isGreaterThan(t->info);
}
return bLessThan &&

 bGreaterThan &&

 bLeftIsTree &&

 bRightIsTree;

} // Complexity with n nodes in the tree?

What is the complexity of IsBST()?

Another Example

•  What is the asymptotic complexity of the
function below? Assume Combine is O(n)

// postcondition: a[left] <= ... <= a[right]

void DoStuff(vector<int> & a, int left, int right)

{

 int mid = (left + right)/2;

 if (left < right)

 {

 DoStuff(a, left, mid);

 DoStuff(a, mid + 1, right);

 Combine(a, left, mid, right);

 }

}

Recurrence Relation

•  A recurrence relation contains two
equations
•  One for the general case

•  One for the base case

Merge Sort

 MERGE-SORT(A, p, r) // A:Array; p,r: ints
// p & r are indices into the array (p < r)

 if p < r //Check for base case

 q = ⎣(p + r) / 2⎦ // Divide

 MERGE-SORT(A, p, q) //Conquer

 MERGE-SORT(A, q + 1, r) //Conquer

 MERGE(A, p, q, r) //Combine

Recurrence Relation

•  Let T(n) be the time for Merge-Sort to
execute on an n element array.

•  The time to execute on a one element array
is O(1)

•  Then we have the following relationship:

Merge Sort – Substitution Method

•  To solve the recurrence relation we’ll write n
instead of O(n) as it makes the algebra
simpler:
T(n) = 2 T(n/2) + n

T(1) = 1

•  Derive a solution using the iteration method
• Hope that you find a pattern

•  Prove the solution using induction

Substitution Method

•  Derive a solution to a recurrence using
iteration of back substitution

•  Prove

Your Turn

•  Use the iteration method to derive a solution
to the recurrence below:
T(n) = T(n/2) + c

T(1) = 1

Recurrence Relations to Remember

T(n) = T(n/2) + O(1)

T(n) = T(n-1) + O(1)

T(n) = 2 T(n/2) + O(1)

T(n) = T(n-1) + O(n)

T(n) = 2 T(n/2) + O(n)

Approaches to Algorithm Design

•  Incremental
•  Job is partly done – do a little more, repeat until

done.

•  Divide-and-Conquer (recursive)
• Divide problem into sub-problems of the same

kind.
•  For small subproblems, solve, else, solve them

recursively.
• Combine subproblem solutions to solve the

whole thing.

For Next Time

• So far we’ve covered chapters 1, 2, 3, and
part of 4.

