
1

Another Sorting Algorithm

•  What was the running time of insertion sort?

•  Can we do better?

CS380 Algorithm Design and Analysis

2

Designing Algorithms

•  Many ways to design an algorithm:
o  Incremental:

o  Divide and Conquer:

CS380 Algorithm Design and Analysis

3

Divide and Conquer

•  Divide

•  Conquer

•  Combine

CS380 Algorithm Design and Analysis

4

Merge Sort

•  Merge Sort is an example of a divide and conquer
algorithm
MERGE-SORT(A, p, r)

∇ p & r are indices into the array (p < r)

if p < r ∇Check for base case

 then q ← ⎣(p + r) / 2⎦ ∇Divide

 MERGE-SORT(A, p, q) ∇Conquer

 MERGE-SORT(A, q + 1, r) ∇Conquer

 MERGE(A, p, q, r) ∇Combine

CS380 Algorithm Design and Analysis

5

Example

•  How would the following array (n=11) be sorted?
Since we are sorting the full array, p=1 and r = 11.

•  What would the initial call to MERGE-SORT look
like?

•  What would the next call to MERGE-SORT look
like?

•  What would the one after that look like?

4 7 2 6 1 4 7 3 5 2 6

CS380 Algorithm Design and Analysis

6

The Merge Procedure

•  Input: Array A and indices p, q, r such that
o  p ≤ q < r
o  Subarray A[p..q] is sorted and subarray A[q+1..r]

is sorted. Neither subarray is empty

•  Output: The two subarrays are merged into
a single sorted subarray in A[p..r]

CS380 Algorithm Design and Analysis

1

2
3

4

5
6

7

8

9

10

11

12

13

14

15

16

17

8

Example

•  A call of MERGE(A, 1, 3, 5) where the array
is:

3 5 7 2 6

CS380 Algorithm Design and Analysis

9

Analysis

•  Best Case: Too easy to cheat with best
case. We do not rely it on much

•  Average Case: Usually very hard to
compute the average running time. Very
time consuming.

•  Worst Case: Fairly easy to analyze. Often
close to the average running time. More
informative.

CS380 Algorithm Design and Analysis

10

Exact Analysis is Hard

•  Best, average, and worst case complexity of
an algorithm is a numerical function of the
size of the instances.

CS380 Algorithm Design and Analysis

11

Exact Analysis is Hard

•  It is difficult to work with exactly because it
is typically very complicated.

•  It is cleaner and easier to talk about upper
and lower bounds of the function.

•  Remember that we ignore constants.
o  This makes sense since running our algorithm

on a machine that is twice as fast will affect the
running time by a multiplicative constant of 2, we
are going to have to ignore constant factors
anyway.

CS380 Algorithm Design and Analysis

12

Asymptotic Notation

•  Asymptotic notation (Ο, Θ, Ω) are the best
that we can practically do to deal with the
complexity of functions.

CS380 Algorithm Design and Analysis

13

Bounding Functions

•  f(n) = Ο(g(n))

•  f(n) = Ω(g(n))

•  f(n) = Θ(g(n))

CS380 Algorithm Design and Analysis

14

Examples of Ο, Ω, and Θ

CS380 Algorithm Design and Analysis

15

Formal Definitions – Big Oh

•  if there are positive constants
and such that to the right of , the value of

 always lies on or below .

•  Think of the equality (=) as meaning in the
set of functions.

CS380 Algorithm Design and Analysis

))(()(ngnf Ο= 0n
c

)(nf)(. ngc
0n

16

Formal Definitions – Big Omega

CS380 Algorithm Design and Analysis

17

Formal Definitions – Big Theta

CS380 Algorithm Design and Analysis

18

Logarithms

•  It is important to understand deep in your
bones what logarithms are and where they
come from.

•  A logarithm is simply an inverse exponential
function. Saying bx = y is equivalent to
saying that x = logb y.

CS380 Algorithm Design and Analysis

19

Logarithms

•  Exponential functions, like the amount owed
on a n year mortgage at an interest rate of c
% per year, are functions which grow
distressingly fast, as anyone who has tried to
pay off a mortgage knows.

•  Thus inverse exponential functions, ie.
logarithms, grow refreshingly slowly.

CS380 Algorithm Design and Analysis

20

Examples of Logarithmic Functions

•  Binary search is an example of an O(lg n)
algorithm. After each comparison, we can
throw away half the possible number of
keys.

•  Thus twenty comparisons suffice to find any
name in the million-name Manhattan phone
book!

•  If you have an algorithm which runs in O(lg
n) time, take it, because this is blindingly fast
even on very large instances.

CS380 Algorithm Design and Analysis

Asymptotic Dominance in Action
O(lg n) O(n) O(n lg n) n2 2n n!

10 0.003 µs 0.01 µs 0.033 µs 0.1 µs 1 µs 3.63 ms
20 0.004 µs 0.02 µs 0.086 µs 0.4 µs 1 ms 77.1 years
30 0.005 µs 0.03 µs 0.147 µs 0.9 µs 1 sec 8.4*1015 yrs
40 0.005 µs 0.04 µs 0.213 µs 1.6 µs 18.3 min

50 0.006 µs 0.05 µs 0.282 µs 2.5 µs 13 days

100 0.007 µs 0.1 µs 0.644 µs 10 µs 4*1013 yrs

1,000 0.010 µs 1.00 µs 9.966 µs 1 ms

10,000 0.013 µs 10 µs 130 µs 100 ms

100,000 0.017 µs 0.10 ms 1.67 ms 10 sec

1,000,000 0.020 µs 1 ms 19.93 ms 16.7 min

10,000,000 0.023 µs 0.01 sec 0.23 sec 1.16 days

100,000,000 0.027 µs 0.10 sec 2.66 sec 115.7 days

1,000,000,000 0.030 µs 1 sec 29.90 sec 3.7 years

22

Growth rate of complexity functions

23 CS380 Algorithm Design and Analysis

Readings

•  Read chapters 1, 2, 3 from the book

