Another Sorting Algorithm

What was the running time of insertion sort?

Can we do better?

Designing Algorithms

- Many ways to design an algorithm:
 - o Incremental:

Divide and Conquer:

Divide and Conquer

Divide

Conquer

Combine

Merge Sort

Merge Sort is an example of a divide and conquer algorithm

Example

How would the following array (n=11) be sorted?
 Since we are sorting the full array, p=1 and r = 11.

- What would the initial call to MERGE-SORT look like?
- What would the next call to MERGE-SORT look like?
- What would the one after that look like?

The Merge Procedure

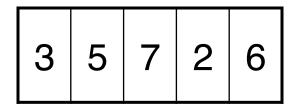
- Input: Array A and indices p, q, r such that
 - o $p \le q < r$
 - Subarray A[p..q] is sorted and subarray A[q+1..r] is sorted. Neither subarray is empty

 Output: The two subarrays are merged into a single sorted subarray in A[p..r]

```
MERGE (A, p, q, r)
1 \quad n_1 \leftarrow q - p + 1
  n_2 \leftarrow r - q
   create arrays L[1..n_1+1] and R[1..n_2+1]
  for i \leftarrow 1 to n_1
       do L[i] \leftarrow A[p+i-1]
   for j \leftarrow 1 to n_2
      do R[j] \leftarrow A[q+j]
    L[n_1 + 1] \leftarrow \infty
R[n_2 + 1] \leftarrow \infty
    i \leftarrow 1
|j \leftarrow 1|
13 for k \leftarrow p to r
        do if L[i] \leq R[j]
           then A[k] \leftarrow L[i]
15
               i \leftarrow i + 1
          else A[k] \leftarrow R[j]
16
               j \leftarrow j + 1
17
```

Example

 A call of MERGE(A, 1, 3, 5) where the array is:

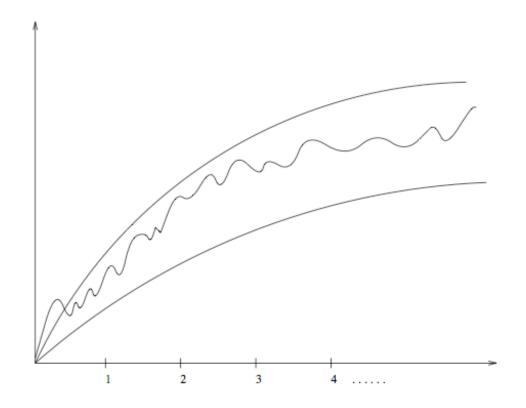


Analysis

- Best Case: Too easy to cheat with best case. We do not rely it on much
- Average Case: Usually very hard to compute the average running time. Very time consuming.
- Worst Case: Fairly easy to analyze. Often close to the average running time. More informative.

Exact Analysis is Hard

 Best, average, and worst case complexity of an algorithm is a numerical function of the size of the instances.



Exact Analysis is Hard

- It is difficult to work with exactly because it is typically very complicated.
- It is cleaner and easier to talk about upper and lower bounds of the function.
- Remember that we ignore constants.
 - This makes sense since running our algorithm on a machine that is twice as fast will affect the running time by a multiplicative constant of 2, we are going to have to ignore constant factors anyway.

Asymptotic Notation

 Asymptotic notation (O, Θ, Ω) are the best that we can practically do to deal with the complexity of functions.

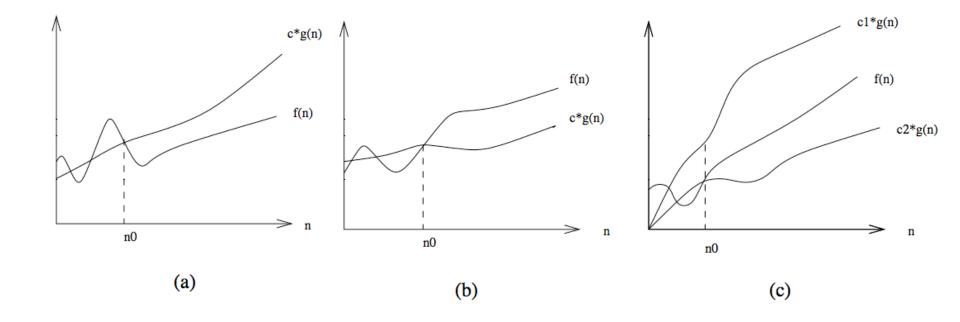
Bounding Functions

• f(n) = O(g(n))

• $f(n) = \Omega(g(n))$

• $f(n) = \Theta(g(n))$

Examples of O, Ω , and Θ



Formal Definitions – Big Oh

• f(n) = O(g(n)) if there are positive constants n_0 and c such that to the right of n_0 , the value of f(n) always lies on or below c.g(n).

 Think of the equality (=) as meaning in the set of functions.

Formal Definitions - Big Omega

Formal Definitions – Big Theta

Logarithms

- It is important to understand deep in your bones what logarithms are and where they come from.
- A logarithm is simply an inverse exponential function. Saying b^x = y is equivalent to saying that x = log_b y.

Logarithms

- Exponential functions, like the amount owed on a n year mortgage at an interest rate of c % per year, are functions which grow distressingly fast, as anyone who has tried to pay off a mortgage knows.
- Thus inverse exponential functions, ie. logarithms, grow refreshingly slowly.

Examples of Logarithmic Functions

- Binary search is an example of an O(lg n) algorithm. After each comparison, we can throw away half the possible number of keys.
- Thus twenty comparisons suffice to find any name in the million-name Manhattan phone book!
- If you have an algorithm which runs in O(lg n) time, take it, because this is blindingly fast even on very large instances.

Asymptotic Dominance in Action						
	O(lg n)	O(n)	O(n lg n)	n ²	2 ⁿ	n!
10	0.003 µs	0.01 µs	0.033 µs	0.1 µs	1 μs	3.63 ms
20	0.004 µs	0.02 µs	0.086 µs	0.4 µs	1 ms	77.1 years
30	0.005 µs	0.03 µs	0.147 µs	0.9 µs	1 sec	8.4*1015 yrs
40	0.005 µs	0.04 µs	0.213 µs	1.6 µs	18.3 min	
50	0.006 µs	0.05 µs	0.282 µs	2.5 µs	13 days	

 $0.644 \mu s$

 $9.966 \mu s$

130 µs

1.67 ms

19.93 ms

0.23 sec

2.66 sec

10 µs

1 ms

100 ms

10 sec

16.7 min

1.16 days

115.7 days

4*10¹³ yrs

 $0.007 \mu s$

 $0.010 \mu s$

 $0.013 \mu s$

 $0.017 \, \mu s$

 $0.020 \mu s$

 $0.023 \, \mu s$

 $0.027 \mu s$

 $0.1 \, \mu s$

 $1.00 \mu s$

0.10 ms

0.01 sec

0.10 sec

10 µs

1 ms

100

1,000

10,000

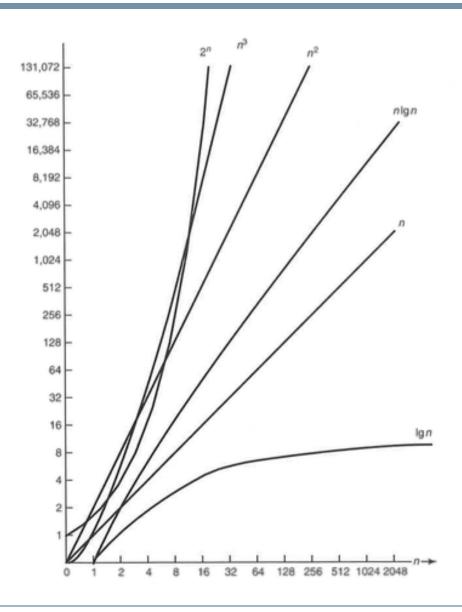
100,000

1,000,000

10,000,000

100,000,000

Growth rate of complexity functions



Readings

Read chapters 1, 2, 3 from the book