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Another Sorting Algorithm 

•  What was the running time of insertion sort? 

•  Can we do better? 
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Designing Algorithms 

•  Many ways to design an algorithm:
o  Incremental:

o  Divide and Conquer:
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Divide and Conquer 

•  Divide 

•  Conquer 

•  Combine 
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Merge Sort 

•  Merge Sort is an example of a divide and conquer 
algorithm
MERGE-SORT(A, p, r) 

∇ p & r are indices into the array (p < r) 

if p < r              ∇Check for base case 

  then q ← ⎣(p + r) / 2⎦    ∇Divide 

    MERGE-SORT(A, p, q)     ∇Conquer 

    MERGE-SORT(A, q + 1, r) ∇Conquer 

    MERGE(A, p, q, r)       ∇Combine 
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Example

•  How would the following array (n=11) be sorted? 
Since we are sorting the full array, p=1 and r = 11.

•  What would the initial call to MERGE-SORT look 
like?

•  What would the next call to MERGE-SORT look 
like?

•  What would the one after that look like? 

4 7 2 6 1 4 7 3 5 2 6 
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The Merge Procedure 

•  Input: Array A and indices p, q, r such that
o  p ≤ q < r
o  Subarray A[p..q] is sorted and subarray A[q+1..r] 

is sorted. Neither subarray is empty

•  Output: The two subarrays are merged into 
a single sorted subarray in A[p..r]
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Example 

•  A call of MERGE(A, 1, 3, 5) where the array 
is:

3 5 7 2 6 
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Analysis 

•  Best Case: Too easy to cheat with best 
case. We do not rely it on much 

•  Average Case: Usually very hard to 
compute the average running time. Very 
time consuming. 

•  Worst Case: Fairly easy to analyze. Often 
close to the average running time. More 
informative. 
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Exact Analysis is Hard 

•  Best, average, and worst case complexity of 
an algorithm is a numerical function of the 
size of the instances. 
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Exact Analysis is Hard 

•  It is difficult to work with exactly because it 
is typically very complicated. 

•  It is cleaner and easier to talk about upper 
and lower bounds of the function. 

•  Remember that we ignore constants. 
o  This makes sense since running our algorithm 

on a machine that is twice as fast will affect the 
running time by a multiplicative constant of 2, we 
are going to have to ignore constant factors 
anyway. 
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Asymptotic Notation 

•  Asymptotic notation (Ο, Θ, Ω) are the best 
that we can practically do to deal with the 
complexity of functions. 
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Bounding Functions 

•  f(n) = Ο(g(n)) 

•   f(n) = Ω(g(n))  

•  f(n) = Θ(g(n)) 
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Examples of Ο, Ω, and Θ 
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Formal Definitions – Big Oh 

•                     if there are positive constants 
and    such that to the right of    , the value of 

   always lies on or below          . 

•  Think of the equality (=) as meaning in the 
set of functions. 
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Formal Definitions – Big Omega 
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Formal Definitions – Big Theta 
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Logarithms 

•  It is important to understand deep in your 
bones what logarithms are and where they 
come from. 

•  A logarithm is simply an inverse exponential 
function. Saying bx = y is equivalent to 
saying that x = logb y. 
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Logarithms 

•  Exponential functions, like the amount owed 
on a n year mortgage at an interest rate of c
% per year, are functions which grow 
distressingly fast, as anyone who has tried to 
pay off a mortgage knows. 

•  Thus inverse exponential functions, ie. 
logarithms, grow refreshingly slowly. 
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Examples of Logarithmic Functions 

•  Binary search is an example of an O(lg n) 
algorithm. After each comparison, we can 
throw away half the possible number of 
keys.  

•  Thus twenty comparisons suffice to find any 
name in the million-name Manhattan phone 
book! 

•  If you have an algorithm which runs in O(lg 
n) time, take it, because this is blindingly fast 
even on very large instances. 
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Asymptotic Dominance in Action 
O(lg n) O(n) O(n lg n) n2 2n n! 

10 0.003 µs 0.01 µs 0.033 µs 0.1 µs 1 µs 3.63 ms 
20 0.004 µs 0.02 µs 0.086 µs 0.4 µs 1 ms 77.1 years 
30 0.005 µs 0.03 µs 0.147 µs 0.9 µs 1 sec 8.4*1015 yrs 
40 0.005 µs 0.04 µs 0.213 µs 1.6 µs 18.3 min 

50 0.006 µs 0.05 µs 0.282 µs 2.5 µs 13 days 

100 0.007 µs 0.1 µs 0.644 µs 10 µs 4*1013 yrs 

1,000 0.010 µs 1.00 µs 9.966 µs 1 ms 

10,000 0.013 µs 10 µs 130 µs 100 ms 

100,000 0.017 µs 0.10 ms 1.67 ms 10 sec 

1,000,000 0.020 µs 1 ms 19.93 ms 16.7 min 

10,000,000 0.023 µs 0.01 sec 0.23 sec 1.16 days 

100,000,000 0.027 µs 0.10 sec 2.66 sec 115.7 days 

1,000,000,000 0.030 µs 1 sec 29.90 sec 3.7 years 
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Growth rate of complexity functions 
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Readings 

•  Read chapters 1, 2, 3 from the book 


