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Overview 

•  Where does this class fit? 

•  Topics 
o  Data structures 

o  Big Oh 

o  Searching 

o  Sorting 

o  Graphs 

o  Proofs 
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What is an Algorithm? 

•  A sequence of computational steps that 
transforms the input into the desired output
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Do Algorithms Matter? 

•  Once upon a time … 
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Do Algorithms Matter? 

•  Danny’s Idea: write a program to find 
memory leaks 

•  Built a small library that wrapped the OS’s 
memory allocation and deallocation routines 
with new functions 

•  These functions recorded each allocation 
and deallocation in a data structure that 
would be queried at the end of the program 
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Do Algorithms Matter? 

•  Problem: Program ran really slowly 

•  Heidi to the rescue! 
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Do Algorithms Matter? 

•  Heidi: Describe the problem and solution 

•  Danny: …. 

•  Heidi : Is there a difference in the 
performance of the programs? 

•  Danny: Small programs run in acceptable 
time, regardless if they had memory leaks. 
Programs that did a lot of processing and 
had memory leaks ran disproportionately 
slow 

CS380 Algorithm Design and Analysis 

A Story 



8 

Experiments: Program A 

int main(int argc, char **argv) 

{ 

  for(int i = 0; i < 1000000; i++) 

  { 

    malloc(32); 

  } 

  exit(0);  

} 
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Experiments: Program B 

int main(int argc, char **argv) 

{ 

  for(int i = 0; i < 1000000; i++) 

  { 

    void *x = malloc(32); 

    free(x); 

  } 

  exit(0);  

} 
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Experiments: Program C 
int main(int argc, char **argv) 

{ 

  void *addrs[1000000]; 

  for(int i = 0; i < 1000000; i++) 

  { 

    addrs[i] = malloc(32); 

  } 

  for(int i = 0; i < 1000000; i++) 

  { 

    free(addrs[i]); 

  } 

  exit(0);  
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New Insight 

•  It’s not the number of memory allocations 
open at the end of the program that affected 
performance. 

•  Instead, it’s … 
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Algorithms Matter! 

•  Heidi: How do you track allocated memory? 

•  Danny: A binary search tree. Each node is a 
struct containing: 
o  Pointers to children 

o  Address of allocated memory 

o  Size allocated 

o  Place in program where allocation was made 

•  Memory address is the key for the nodes 
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Algorithms 

•  Binary Search Tree is a good choice 

•  Key is memory address 
o  malloc allocates memory from the heap in order 

of increasing memory address 
o  What happens if addresses are 1-15 (for the 

sake of argument)? 

•  What is the problem with Danny’s code? 
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How do we evaluate algorithms? 

•  Performance 

•  And … 
o    
o    
o    
o    
o    
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Why Study Algorithms? 

•    

•    

•    

•    

•    

•    

•    
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Correctness 

•  For any algorithm, we must prove that it 
always returns the desired output for all legal 
instances of the problem. 

•  What does this mean for a sorting algorithm? 
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Demonstrating Incorrectness 

•  Searching for counterexamples is the best 
way to disprove the correctness of a 
heuristic 

•   Think about all small examples 

•   Think about examples with ties on your 
decision criteria (e.g. pick the nearest point) 

•   Think about examples with extremes of big 
and small 
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Induction and Recursion 

•  Failure to find a counterexample to a given 
algorithm does not mean “it is obvious” that 
the algorithm is correct. 

•  Mathematical induction is a very useful 
method for proving the correctness of 
recursive algorithms. 

•  Recursion and induction are the same basic 
idea: (1) basis case, (2) general assumption, 
(3) general case. 
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Correctness is Not Obvious! 

•  Suppose you have a robot arm equipped 
with a tool, say a soldering iron. To enable 
the robot arm to do a soldering job we must 
construct an ordering of the contact points 
so the robot visits (and solders) the first 
contact point, then visits the second point, 
third, and so forth until the job is done. 

•  Since robots are expensive, we need to find 
the order which minimizes the time (ie. travel 
distance) it takes to assemble the circuit 
board. 
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Correctness is Not Obvious! 

•  Visit each point once, minimizing the 
distance moved 
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Nearest Neighbor Tour 
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Nearest Neighbor Tour 
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A Correct Algorithm 
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Why Not Use a Supercomputer 

•  A faster algorithm running on a slower 
computer will always win for sufficiently large 
instances 

•  Usually, problems don’t have to get that 
large before the faster algorithm wins 
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Expressing Algorithms 

•  What are the possible ways to express an 
algorithm? 
o  English 

o  Pseudocode 

o  Programming Language 
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The RAM Model (section 2.2) 

•  Algorithms can be studied in a machine and 
language independent way 

•  Each “simple” operation (+, -, =, if, call) takes 
exactly one step 

•  Loops and subroutines are not simple 
operations 

•  Each memory access takes one step 
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Best, Worst, and Average-Case 

•  Worst case:  
 

•  Best case:  
 

•  Average case: 
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Example: Sorting 

•  Input: A sequence of n numbers  
<a1, a2, …, an> 

•  Output: A permutation (reordering)  
<a'1, a'2, …, a'n> of the input 
sequence such that a'1 ≤ a'2 ≤ … ≤ a'n 

•  We seek algorithms that are correct and 
efficient  
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Insertion Sort (p. 18) 

INSERTION-SORT(A) // A is an array 

1 for j = 2 to A.length 

2   key = A[j] 

3    // Insert A[j] in to the correct location 

4   i = j – 1 

5   while i > 0 and A[i] > key 

6     A[i+1] = A[i] 

7     i = i – 1 

8   A[i+1] = key 
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Example 

•  How would insertion sort work on the 
following numbers? 
o  3     1     7     4     8     2     6 

CS380 Algorithm Design and Analysis 



31 

Your Turn 

•  Problem: How would insertion sort work on 
the following characters to sort them 
alphabetically (from A -> Z)? Show each 
step. 
o  S     O     R     T     E     D 
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Insertion Sort 

•  Is the algorithm correct? 

•  How efficient is the algorithm? 

•  How does insertion sort do on sorted 
permutations? 

•  How about unsorted permutations? 
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Analysis of Insertion Sort 

•  Best Case 
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Analysis of Insertion Sort 

•  Worst Case 
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For Next Time 

•  Read Chapters 1 and 2 from the book. 
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