
1

Algorithm Design and Analysis

shereen@pacificu.edu

CS380 Algorithm Design and Analysis

2

Overview

•  Where does this class fit?

•  Topics
o  Data structures

o  Big Oh

o  Searching

o  Sorting

o  Graphs

o  Proofs

CS380 Algorithm Design and Analysis

3

What is an Algorithm?

•  A sequence of computational steps that
transforms the input into the desired output

CS380 Algorithm Design and Analysis

4

Do Algorithms Matter?

•  Once upon a time …

CS380 Algorithm Design and Analysis

From Algorithms in a Nutshell. O’Reilly

A Story

5

Do Algorithms Matter?

•  Danny’s Idea: write a program to find
memory leaks

•  Built a small library that wrapped the OS’s
memory allocation and deallocation routines
with new functions

•  These functions recorded each allocation
and deallocation in a data structure that
would be queried at the end of the program

CS380 Algorithm Design and Analysis

A Story

6

Do Algorithms Matter?

•  Problem: Program ran really slowly

•  Heidi to the rescue!

CS380 Algorithm Design and Analysis

A Story

7

Do Algorithms Matter?

•  Heidi: Describe the problem and solution

•  Danny: ….

•  Heidi : Is there a difference in the
performance of the programs?

•  Danny: Small programs run in acceptable
time, regardless if they had memory leaks.
Programs that did a lot of processing and
had memory leaks ran disproportionately
slow

CS380 Algorithm Design and Analysis

A Story

8

Experiments: Program A

int main(int argc, char **argv)

{

 for(int i = 0; i < 1000000; i++)

 {

 malloc(32);

 }

 exit(0);

}

CS380 Algorithm Design and Analysis

A Story

9

Experiments: Program B

int main(int argc, char **argv)

{

 for(int i = 0; i < 1000000; i++)

 {

 void *x = malloc(32);

 free(x);

 }

 exit(0);

}
CS380 Algorithm Design and Analysis

A Story

10

Experiments: Program C
int main(int argc, char **argv)

{

 void *addrs[1000000];

 for(int i = 0; i < 1000000; i++)

 {

 addrs[i] = malloc(32);

 }

 for(int i = 0; i < 1000000; i++)

 {

 free(addrs[i]);

 }

 exit(0);

} CS380 Algorithm Design and Analysis

A Story

11

New Insight

•  It’s not the number of memory allocations
open at the end of the program that affected
performance.

•  Instead, it’s …

CS380 Algorithm Design and Analysis

A Story

12

Algorithms Matter!

•  Heidi: How do you track allocated memory?

•  Danny: A binary search tree. Each node is a
struct containing:
o  Pointers to children

o  Address of allocated memory

o  Size allocated

o  Place in program where allocation was made

•  Memory address is the key for the nodes

CS380 Algorithm Design and Analysis

A Story

13

Algorithms

•  Binary Search Tree is a good choice

•  Key is memory address
o  malloc allocates memory from the heap in order

of increasing memory address
o  What happens if addresses are 1-15 (for the

sake of argument)?

•  What is the problem with Danny’s code?

CS380 Algorithm Design and Analysis

A Story

14

How do we evaluate algorithms?

•  Performance

•  And …
o 
o 
o 
o 
o 

CS380 Algorithm Design and Analysis

15

Why Study Algorithms?

• 

• 

• 

• 

• 

• 

• 

CS380 Algorithm Design and Analysis

16

Correctness

•  For any algorithm, we must prove that it
always returns the desired output for all legal
instances of the problem.

•  What does this mean for a sorting algorithm?

CS380 Algorithm Design and Analysis

17

Demonstrating Incorrectness

•  Searching for counterexamples is the best
way to disprove the correctness of a
heuristic

•  Think about all small examples

•  Think about examples with ties on your
decision criteria (e.g. pick the nearest point)

•  Think about examples with extremes of big
and small

CS380 Algorithm Design and Analysis

18

Induction and Recursion

•  Failure to find a counterexample to a given
algorithm does not mean “it is obvious” that
the algorithm is correct.

•  Mathematical induction is a very useful
method for proving the correctness of
recursive algorithms.

•  Recursion and induction are the same basic
idea: (1) basis case, (2) general assumption,
(3) general case.

CS380 Algorithm Design and Analysis

19

Correctness is Not Obvious!

•  Suppose you have a robot arm equipped
with a tool, say a soldering iron. To enable
the robot arm to do a soldering job we must
construct an ordering of the contact points
so the robot visits (and solders) the first
contact point, then visits the second point,
third, and so forth until the job is done.

•  Since robots are expensive, we need to find
the order which minimizes the time (ie. travel
distance) it takes to assemble the circuit
board.

CS380 Algorithm Design and Analysis

20

Correctness is Not Obvious!

•  Visit each point once, minimizing the
distance moved

CS380 Algorithm Design and Analysis

21

Nearest Neighbor Tour

CS380 Algorithm Design and Analysis

22

Nearest Neighbor Tour

CS380 Algorithm Design and Analysis

-21 -5 -1 0 1 3 11

23

A Correct Algorithm

CS380 Algorithm Design and Analysis

24

Why Not Use a Supercomputer

•  A faster algorithm running on a slower
computer will always win for sufficiently large
instances

•  Usually, problems don’t have to get that
large before the faster algorithm wins

CS380 Algorithm Design and Analysis

25

Expressing Algorithms

•  What are the possible ways to express an
algorithm?
o  English

o  Pseudocode

o  Programming Language

CS380 Algorithm Design and Analysis

26

The RAM Model (section 2.2)

•  Algorithms can be studied in a machine and
language independent way

•  Each “simple” operation (+, -, =, if, call) takes
exactly one step

•  Loops and subroutines are not simple
operations

•  Each memory access takes one step

CS380 Algorithm Design and Analysis

27

Best, Worst, and Average-Case

•  Worst case:

•  Best case:

•  Average case:

CS380 Algorithm Design and Analysis

28

Example: Sorting

•  Input: A sequence of n numbers
<a1, a2, …, an>

•  Output: A permutation (reordering)
<a'1, a'2, …, a'n> of the input
sequence such that a'1 ≤ a'2 ≤ … ≤ a'n

•  We seek algorithms that are correct and
efficient

CS380 Algorithm Design and Analysis

29

Insertion Sort (p. 18)

INSERTION-SORT(A) // A is an array

1 for j = 2 to A.length

2 key = A[j]

3 // Insert A[j] in to the correct location

4 i = j – 1

5 while i > 0 and A[i] > key

6 A[i+1] = A[i]

7 i = i – 1

8 A[i+1] = key

CS380 Algorithm Design and Analysis

30

Example

•  How would insertion sort work on the
following numbers?
o  3 1 7 4 8 2 6

CS380 Algorithm Design and Analysis

31

Your Turn

•  Problem: How would insertion sort work on
the following characters to sort them
alphabetically (from A -> Z)? Show each
step.
o  S O R T E D

CS380 Algorithm Design and Analysis

32

Insertion Sort

•  Is the algorithm correct?

•  How efficient is the algorithm?

•  How does insertion sort do on sorted
permutations?

•  How about unsorted permutations?

CS380 Algorithm Design and Analysis

33

Analysis of Insertion Sort

•  Best Case

CS380 Algorithm Design and Analysis

34

Analysis of Insertion Sort

•  Worst Case

CS380 Algorithm Design and Analysis

35

For Next Time

•  Read Chapters 1 and 2 from the book.

CS380 Algorithm Design and Analysis

