
GENERIC
PROGRAMMING

C++ has Templates
•  C has void* and function pointers

•  How do we write a Linked List that accepts
any data type?

•  How do we write a Linked List that accepts
any data type and keeps the list in sorted
order?

•  How do we apply the same function to every
element in a list? Print?

Sorting Integers

Generic Sorting
•  How do we make the previous sorting function

generic?
–  void bubble (void *arry, int count);
–  void bubble (void *arry, int count, int elementsize);

•  Given b) we can calculate the address of an arbitrary
element of arry[k] as follows:
 (void *) ((char *) arry + k * elementsize)

•  Address arithmetic cannot be performed on type void *

Compare
•  If we insert two ints, how do we

compare them?

•  How do we compare two void* items?
–  no data type information

#include <string.h>
int memcmp(void* ptr, void* ptr2, size_t size);

int memcpy(void* dest, void* src, size_t size);

size_t
•  Look in a C Eclipse Project | Includes | /

usr/lib64/gcc/x86_64-suse-linux/4.5/
include | stddef.h

•  line 208
#define __SIZE_TYPE__ long unsigned int

typedef __SIZE_TYPE__ size_t;

Generic Sort

Generic Sort Driver

Generic Sort Results

Function Pointers
•  Since a pointer is just an address, we can

have pointers to functions!
•  A function can be called using this address
•  Function pointers can be passed as

arguments to other functions or return
from functions

•  Define the function pointer
– returnType (*name)(paramType ...)

Above main
int (*foo) (int);

int negate (int x)
{

 return -x;
}

int square (int x)
{

 return x * x;
}

Call a Function Using the Pointer
foo = &negate;
printf ("\nNegative of 5 is %d\n", (*foo)
(5));

foo = □
printf ("\nSquare of 5 is %d\n", (*foo) (5));

Passing Functions as Arguments

Passing Functions as Arguments

Passing Functions as Arguments

Passing Functions as Arguments

