CS300 Data Structures (Fall 2015)

RECURSION




CS300 Data Structures (Fall 2015)

Recursive Functions

- All function calls that we have seen so far have been
made by other functions

-\-

- A recursive function is a function that calls itself

comput |




CS300 Data Structures (Fall 2015)

Recursion

- Some problems are more easily solved using recursion

- Tree functionality is more easily solved by recursion than
by iteration



CS300 Data Structures (Fall 2015)

First Recursive Problem

void count (int index)
{
printf ("%d", index);
if (index < 2)
{
count (index + 1) ;
}
}

What is the output?
int main ()

{

count (0);
return O;

}




CS300 Data Structures (Fall 2015)

Visualizing Recursion

- To understand how recursion works, it helps to visualize
what is going on

- We will do this using Activation Records (stack frames)
and the Call Stack

- Each time a function is called, an activation record is
created and pushed on to the top of the stack

- When the function returns, the activation record is popped
off the stack



CS300 Data Structures (Fall 2015)

Recursion and the Call Stack

- When a method calls itself recursively, you just push
another copy of the function on to the top of the stack



CS300 Data Structures (Fall 2015)

Recursion and Call Stacks

Time: 0 Time 1: Time 2: Time 3: Time 4: Times 5-8:
Empty Stack Push: main() Push: count(0) Push: count(1) Push: count(2) Pop everything




What is the Output?

void count (int index)
{
printf ("%d", index);
if (index < 2)
{
count (index + 1) ;
}
}

int main ()
{
count (3);
return O;



What is the Output?

void count (int index)

{
if (index < 2)

{

count (index + 1) ;

J

printf ("%d", index);

J

int main ()
{
count (0);
return O;



What is the Output?

void upAndDown (int index)
{

printf ("Pushing level: %d\n", index);

if (index < 4)

{

upAndDown (index + 1);

}

printf ("Popping level: %d\n", index);
}
int main ()
{

upAndDown (1) ;

return O;



CS300 Data Structures (Fall 2015)

Recursion and Factorials

- Computing factorials are a classic problem for examining
recursion.

- A factorial is defined as follows:

n! =n* (n-1) * (n-2) ... * 1;

- For example:

1! = 1 (Base Case)

2! = 2 * 1 = 2

3! =3 * 2 1 =6

4! = 4 * 3 * 2 * 1 = 24

5! =5 % 4 » 3 ¥ 2 * 1 = 120



CS300 Data Structures (Fall 2015)

Recursion and Factorials

- First step is to frame the problem in terms of itself. You do
this by finding a pattern

- Once you see the pattern, you can apply this pattern to
create a recursive solution to the problem

- Divide a problem up into:

- What it can do (usually a base case)

- What it cannot do

- What it cannot do resembles original problem

- The function launches a new copy of itself (recursion step) to solve what it
cannot do



CS300 Data Structures (Fall 2015)

Recursive Factorial Solution

int main ()

{

int 1i;

for (i = 1; 1 <= 10; ++1i)
{

printf ("%d!': %d\n", i, factorial (i));
}

return 0;

J



CS300 Data Structures (Fall 2015)

Recursive Fibonaccl

- Write a recursive function to calculate the Fibonacci value
at a particular index

- Fibonacci: Each number in the series is the sum of the
two previous numbers:
-0,1,1,2,3,5,8,13, 21 ...
- Fib (0)=0
- Fib (1) =1
- Fib (2) =1
- Fib (3)=2
- Fib (4) =3



