
RECURSION

CS300 Data Structures (Fall 2015)

Recursive Functions
• All function calls that we have seen so far have been

made by other functions

• A recursive function is a function that calls itself

CS300 Data Structures (Fall 2015)

main()
square()

compute()

Recursion
• Some problems are more easily solved using recursion

• Tree functionality is more easily solved by recursion than
by iteration

CS300 Data Structures (Fall 2015)

First Recursive Problem
void count (int index)
{
 printf ("%d", index);
 if (index < 2)
 {
 count (index + 1);
 }
}

int main ()
{
 count (0);
 return 0;
}

CS300 Data Structures (Fall 2015)

What is the output?

Visualizing Recursion
• To understand how recursion works, it helps to visualize

what is going on

• We will do this using Activation Records (stack frames)
and the Call Stack

• Each time a function is called, an activation record is
created and pushed on to the top of the stack

• When the function returns, the activation record is popped
off the stack

CS300 Data Structures (Fall 2015)

Recursion and the Call Stack
• When a method calls itself recursively, you just push

another copy of the function on to the top of the stack

CS300 Data Structures (Fall 2015)

Recursion and Call Stacks

CS300 Data Structures (Fall 2015)

Time: 0
Empty Stack

Time 1:
Push: main()

main()

Time 2:
Push: count(0)

main()

count(0)

Time 3:
Push: count(1)

main()

count(0)

count(1)

Time 4:
Push: count(2)

main()

count(0)

count(1)

count(2)

Times 5-8:
Pop everything

…

What is the Output?
void count (int index)
{
 printf ("%d", index);
 if (index < 2)
 {
 count (index + 1);
 }
}

int main ()
{
 count (3);
 return 0;
}

CS300 Data Structures (Fall 2015)

What is the Output?
void count (int index)
{
 if (index < 2)
 {

 count (index + 1);
 }
 printf ("%d", index);
}

int main ()
{
 count (0);
 return 0;
}

CS300 Data Structures (Fall 2015)

What is the Output?
void upAndDown (int index)
{
 printf ("Pushing level: %d\n", index);
 if (index < 4)
 {

 upAndDown (index + 1);
 }
 printf ("Popping level: %d\n", index);
}
int main ()
{
 upAndDown (1);
 return 0;
}

CS300 Data Structures (Fall 2015)

Recursion and Factorials
• Computing factorials are a classic problem for examining

recursion.

• A factorial is defined as follows:
n! = n * (n-1) * (n-2) …. * 1;

• For example:
1! = 1 (Base Case)
2! = 2 * 1 = 2
3! = 3 * 2 * 1 = 6
4! = 4 * 3 * 2 * 1 = 24
5! = 5 * 4 * 3 * 2 * 1 = 120

CS300 Data Structures (Fall 2015)

Recursion and Factorials
• First step is to frame the problem in terms of itself. You do

this by finding a pattern

• Once you see the pattern, you can apply this pattern to
create a recursive solution to the problem

• Divide a problem up into:
•  What it can do (usually a base case)
•  What it cannot do

•  What it cannot do resembles original problem
•  The function launches a new copy of itself (recursion step) to solve what it

cannot do

CS300 Data Structures (Fall 2015)

Recursive Factorial Solution
int main ()
{
 int i;

 for (i = 1; i <= 10; ++i)
 {

 printf ("%d!: %d\n", i, factorial (i));
 }
 return 0;
}

CS300 Data Structures (Fall 2015)

Recursive Fibonacci
• Write a recursive function to calculate the Fibonacci value

at a particular index

• Fibonacci: Each number in the series is the sum of the
two previous numbers:
•  0, 1, 1, 2, 3, 5, 8, 13, 21 …
•  Fib (0) = 0
•  Fib (1) = 1
•  Fib (2) = 1
•  Fib (3) = 2
•  Fib (4) = 3

CS300 Data Structures (Fall 2015)

