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Recursive Functions 
• All function calls that we have seen so far have been 

made by other functions 

• A recursive function is a function that calls itself 
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main() 
square() 

compute() 



Recursion 
• Some problems are more easily solved using recursion 

• Tree functionality is more easily solved by recursion than 
by iteration 
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First Recursive Problem 
void count (int index) 
{ 
  printf ("%d", index); 
  if (index < 2) 
  { 
  count (index + 1); 
  } 
} 
 
int main () 
{ 
  count (0); 
  return 0; 
} 
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What is the output? 
 
 
 
 



Visualizing Recursion 
• To understand how recursion works, it helps to visualize 

what is going on 

• We will do this using Activation Records (stack frames) 
and the Call Stack 

• Each time a function is called, an activation record is 
created and pushed on to the top of the stack 

• When the function returns, the activation record is popped 
off the stack 
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Recursion and the Call Stack 
• When a method calls itself recursively, you just push 

another copy of the function on to the top of the stack 
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Recursion and Call Stacks 

CS300 Data Structures (Fall 2015) 

Time: 0 
Empty Stack 

Time 1: 
Push:  main() 

main() 

Time 2: 
Push:  count(0) 

main() 

count(0) 

Time 3: 
Push:  count(1) 

main() 

count(0) 

count(1) 

Time 4: 
Push:  count(2) 

main() 

count(0) 

count(1) 

count(2) 

Times 5-8: 
Pop everything 

… 



What is the Output? 
void count (int index) 
{ 
  printf ("%d", index); 
  if (index < 2) 
  { 
   count (index + 1); 
  } 
} 
 
int main () 
{ 
  count (3); 
  return 0; 
} 
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What is the Output? 
void count (int index) 
{ 
  if (index < 2) 
  { 

  count (index + 1); 
  } 
  printf ("%d", index); 
} 
 
int main () 
{ 
  count (0); 
  return 0; 
} 
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What is the Output? 
void upAndDown (int index) 
{ 
  printf ("Pushing level: %d\n", index); 
  if (index < 4) 
  { 

  upAndDown (index + 1); 
  } 
  printf ("Popping level: %d\n", index); 
} 
int main () 
{ 
  upAndDown (1); 
  return 0; 
} 
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Recursion and Factorials 
• Computing factorials are a classic problem for examining 

recursion. 

• A factorial is defined as follows: 
n!  = n * (n-1) * (n-2) …. * 1; 
 

• For example: 
1! = 1 (Base Case) 
2! = 2 * 1 = 2 
3! = 3 * 2 * 1 = 6 
4! = 4 * 3 * 2 * 1 = 24 
5! = 5 * 4 * 3 * 2 * 1 = 120 
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Recursion and Factorials 
• First step is to frame the problem in terms of itself. You do 

this by finding a pattern 

• Once you see the pattern, you can apply this pattern to 
create a recursive solution to the problem 

• Divide a problem up into: 
•  What it can do (usually a base case) 
•  What it cannot do 

•  What it cannot do resembles original problem 
•  The function launches a new copy of itself (recursion step) to solve what it 

cannot do 
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Recursive Factorial Solution 
int main () 
{ 
  int i; 
 
  for (i = 1; i <= 10; ++i) 
  { 

  printf ("%d!: %d\n", i, factorial (i)); 
  } 
  return 0; 
} 
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Recursive Fibonacci 
• Write a recursive function to calculate the Fibonacci value 

at a particular index 

• Fibonacci: Each number in the series is the sum of the 
two previous numbers: 
•  0, 1, 1, 2, 3, 5, 8, 13, 21 … 
•  Fib (0) = 0 
•  Fib (1) = 1 
•  Fib (2) = 1 
•  Fib (3) = 2 
•  Fib (4) = 3 
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